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Abstract
A number of bioactive dietary components are of particular interest in the field of epigenetics.
Many of these compounds display anticancer properties and may play a role in cancer prevention.
Numerous studies suggest that a number of nutritional compounds have epigenetic targets in
cancer cells. Importantly, emerging evidence strongly suggests that consumption of dietary agents
can alter normal epigenetic states as well as reverse abnormal gene activation or silencing.
Epigenetic modifications induced by bioactive dietary compounds are thought to be beneficial.
Substantial evidence is mounting proclaiming that commonly consumed bioactive dietary factors
act to modify the epigenome and may be incorporated into an ‘epigenetic diet’. Bioactive
nutritional components of an epigenetic diet may be incorporated into one’s regular dietary
regimen and used therapeutically for medicinal or chemopreventive purposes. This article will
primarily focus on dietary factors that have been demonstrated to influence the epigenome and that
may be used in conjunction with other cancer prevention and chemotherapeutic therapies.
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Dietary factors have become agents of strong interest in the field of epigenetics. A number
of bioactive dietary components that appear to have potential to prevent disease and promote
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overall health have been identified [1–4]. In fact, several naturally occurring dietary
phytochemicals have been demonstrated to have anticarcinogenic properties and may play a
role in regulating biological processes [5,6]. Many studies have shown that natural products
have epigenetic targets in cancer cells and can act as cancer preventive agents. Compounds
found in dietary phytochemical preparations such as teas, garlic, soy products, herbs, grapes
and cruciferous vegetables are now generally accepted to defend against the development of
many different types of tumors as well as acting as epigenetic modulators that impact not
only the initiation, but also the progression of oncogenesis [6–9].

Epigenetic mechanisms
The term epigenetics was coined in 1942 by developmental biologist Conrad H Waddington
[10]. Epigenetics generally refers to heritable changes in gene expression and chromatin
organization that are not due to alterations in the DNA sequence [11]. Epigenetic
modifications typically occur by changes in DNA methylation, histone covalent
modifications or by RNAi [12]. DNA methylation occurs when a methyl group is added to
the 5-carbon (C5) position of a cytosine. The methylation of cytosine involves the transfer of
a methyl group from S-adenosyl-L-methionine (SAM), a methyl precursor, to the cytosines
in CpG dinucleotides [13]. DNA methylation has many roles in various cellular processes
and may impact the transcription of genes by preventing the binding of key transcriptional
factors [14–17]. Transcriptional silencing due to DNA methylation is thought to occur by
the recruitment of methyl CpG-binding transcriptional repressors and by interfering with the
DNA binding of transcriptional activators, which in turn results in a condensed chromatin
state. In addition, methylated DNA may be bound by methyl-CpG-binding domain (MBD)
proteins, which are essential for binding to 5-methylcytosine [16]. DNA methylation is
catalyzed by enzymes known as DNA methyltransferases (DNMTs) and hypermethylation
of CpG dinucleotides or CpG islands by DNMTs usually results in transcriptional gene
silencing and gene inactivation [12]. The human genome contains four DNMT genes,
DNMT1, DNMT2, DNMT3A and DNMT3B [18]. Altered DNMT expression and activity is
seen in numerous diseases including autism, cardiovascular diseases, obesity, Type-2
diabetes and cancer [19–23]. In addition, global hypomethylation is associated with nearly
all human cancers [24,25].

Histone modifications typically occur as post-translational modifications at the N-terminal
of histones. These modifications include acetylation, methylation, phosphorylation,
biotinylation and ubiquitination and are essential during development [26–28]. Histone
modifications are catalyzed by enzymes such as histone methyltransferases (HMTs), histone
demethylases (HDMs) histone acetyltransferases (HATs), and histone deacetylases
(HDACs). HMTs act to add methyl groups to lysine and/or arginine residues in histones,
while HDMs remove the methyl moieties. In turn, HATs catalyze the addition of acetyl
groups to the lysine residues of histones, whereas HDACs are responsible for the removal of
these groups [29,30]. Lysine methylation can cause either activation or repression of
transcription, while arginine methylation typically activates transcription. Likewise, histone
hyperacetylation results in the activation of normally repressed genes while hypoacetylation
results in gene silencing. This is apparent in carcinogenesis where aberrant activity of HATs
and HDACs are thought to trigger carcinogenic processes [31].

RNAi is the process by which dsRNA inhibits the accumulation of homologous transcripts
from like genes [32]. RNAi or ncRNAs, in the form of antisense transcripts, can lead to
transcriptional silencing by the formation of heterochromatin. The involvement of RNA in
different silencing mechanisms has been described in detail in several organisms [33]. For
example, in the yeast Schizosaccharomyces pombe, the deletion of different components of
the RNAi machinery results in the loss of H3K9 methylation, as well as impairment of

Hardy and Tollefsbol Page 2

Epigenomics. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



centromere function [33,34]. Similarly, DNA methylation and H3K9 methylation have been
demonstrated in Arabidopsis thaliana and in α-thalassaemia [35,36]. RNAi has also been
demonstrated to be involved in silencing genes associated with HIV-1, along with several
types of cancers [37–41]. In addition, noncoding miRNAs can control the expression of
DNMTs and other enzymes associated with epigenetic modifications, which affect mRNA
translation and stability [42–44]. Exciting developments have indicated that RNAi-directed
silencing of heterochromatic regions might trigger direct histone modifications and DNA
methylation to specific loci, causing gene silencing [35,36,45,46].

Epigenetic modifications are of particular interest in the field of cancer research since their
impact on the epigenome is involved in cell proliferation, differentiation and survival
[27,47,48]. Furthermore, epigenetic modifications are often involved in transcriptional
regulation and have been implicated both in tumor development and progression [40,49,50].
Epigenetic modifications causing transcriptional deregulation may result in the inappropriate
expression or activation of transcription factors associated with oncogenes and/or the failure
to express genes responsible for tumor suppression [51]. In fact, cancer cells have genome-
wide aberrations in a number of epigenetic markers, including global hypomethylation,
global downregulation of miRNAs, promoter-specific hypermethylation, histone
deacetylation and upregulation of epigenetic machinery [52]. In addition, the impact of
epigenomic processes in cancer is apparent by the finding that at least half of all tumor
suppressor genes are inactivated through epigenetic mechanisms in tumorigenesis [16,53–
55]. Bioactive dietary components consumed by ingesting natural products including fruits
and vegetables can act as sources of vitamins and minerals. While this is an invaluable role,
these agents have high potential for application to oncogenesis owing to in part to their
anticarcinogenic properties [9,56]. A growing body of evidence suggests that dietary agents
as well as non-nutrient components of fruits and vegetables can affect epigenetic processes
and are involved in processes, including the reactivation of tumor suppressor genes, the
initiation of apoptosis, the repression of cancer-related genes and the activation of cell
survival proteins in different cancers [57–60]. Dietary phytochemicals such as tea
polyphenols, genistein, sulforaphane (SFN), resveratrol, curcumin and others have been
demonstrated to be effective agents against cancer and to act through epigenetic mechanisms
that affect the epigenome [56,61].

Epigenetic diet phytochemicals affecting the epigenome
Dietary factors play a role in many normal biological processes and are also involved in the
regulation of pathological progressions. Diseases linked to genetic and epigenetic
modifications can be influenced by environmental and dietary factors. In particular,
nutritional factors, drugs, chemicals used in pesticides, environmental compounds and
inorganic contaminants (i.e., arsenic) can alter the epigenome, and may contribute to the
development of abnormalities [62–66]. It has become increasingly clear that
environmentally induced epigenetic changes can be mediated, in part, by diet [67–69]. This
is especially illustrated by an early investigation conducted in an animal model, which
demonstrated that dietary methyl deficiency of folate, choline and methionine altered DNA
methylation patterns in the liver and induced hepatocarcinoma [70]. Evidence has also
emerged indicating that giving mice that have developed methyl-deficiency-induced
hepatocarcinoma a methyl-sufficient diet can lessen the occurrence of abnormal DNA
methylation [71]. Because epigenetic variation can be influenced by dietary factors, it is
reasonable to believe that investigating strategies that utilize dietary compounds to target
epigenetic modifications may be worthwhile in preventing and treating diseases including
cancer.
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Dietary polyphenols
Polyphenols are present in fruits and vegetables and are a vital part of the human diet
[56,72]. Plant polyphenols can be divided into at least ten different classes based on their
chemical structure. These classes include: flavonoids, stilbenes, phenolic acids,
benzoquinones, acetophenones, lignins and xanthones [72,73]. Polyphenols can range from
simple molecules to highly complex compounds and are derived from either phenylalanine
(a phenol intermediate) or its precursor shikimic acid. They typically contain one or more
sugar residues linked to a hydroxyl group and occur in a conjugated form [72]. Some
estimate that more than 8000 distinct dietary polyphenols exist [72]. Examples of common
polyphenols include (−)-epigallocatechin-3-gallate (EGCG; found in green tea), curcumin
(found in curry) and resveratrol (found in grapes). These dietary polyphenols have a
protective role against diseases and also have a significant impact on cancer prevention
[74,75]. In fact, various mechanisms have been identified that help to explain the preventive
nature of polyphenols, including their ability to alter the epigenome in cancer cells by
chromatin remodeling or by reactivating silenced genes [76–78]. The chemo-preventative
potential of dietary polyphenols can be traced to their ability to inhibit DNMTs as well as
their ability to act as histone modifiers. Both of these properties of dietary polyphenols can
significantly change the epigenome of cancer cells and are viewed as attractive possibilities
for anticancer therapeutics.

Tea polyphenols
Next to water, tea is the most consumed beverage worldwide with approximately 20 billion
cups consumed daily [79]. The three most popular types of tea (green, black and oolong) are
differentiated based on the degree of fermentation they undergo. Green tea leaves are dried
and roasted but not fermented, whereas black tea leaves are well fermented and oolong tea
leaves are only partially fermented [79,80]. Studies have indicated that compounds present
in tea may reduce the risk of diseases including cancer. Teas contain polyphenolic
compounds that serve to protect plants from photosynthetic stressors, reactive oxygen
species and consumption by herbivores [56]. As previously stated, polyphenolic compounds
in tea may actively reduce the risk of diseases such as cancer. One subcategory of
polyphenols, catechins, is the most abundant of the bioactive compounds in green tea. These
include (−)-epicatechin (EC), (−)-epicatechin-3-gallate (ECG), (−)-epigallocatechin (EGC),
and EGCG [81]. While all of the aforementioned catechins have been found to share similar
properties, the most efficient of these compounds in targeting factors like DNMTs is EGCG
[77,78]. EGCG accounts for more than 50% of the active compounds in green tea and has
been extensively studied for its anticarcinogenic properties [82]. While studies conducted by
Chuang et al. report disagreeing results regarding the effects of EGCG on DNA methylation
[83], an increasing number of investigations have suggested a positive correlation between
the consumption of EGCG and the inhibition of oral, breast, prostate, gastric, ovarian,
esophageal, skin, colorectal, pancreatic, and head and neck cancers [83–88].

Epigallocatechin-3-gallate is thought to exert its anticancer effects through several different
mechanisms much of which can be altered by epigenetic mechanisms; these include the
induction of apoptosis and cell cycle arrest, inhibition of oxidative stress and angiogenesis,
regulation of signal transduction and reduction of cancer cell proliferation [89–92]. EGCG
can inhibit DNMT activity through direct enzyme interaction leading to demethylation and
reactivation of genes previously silenced by methylation (see Figure 1 & Table 1)
[77,93,94]. Early studies conducted by Fang et al. demonstrated that treatment of esophageal
cancer cells with EGCG in fact lowered DNMT activity and caused a time- and dose-
dependent reversal of hypermethylation in tumor suppressor genes including p16, RARβ,
hMLH1 and MGMT [95]. A recent investigation involving A431 skin cancer cells revealed
that EGCG treatment not only decreased global DNA methylation levels, but also decreased
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the levels of 5-methyl-cytosine, DNMT activity, mRNA and protein levels of DNMT1,
DNMT3a and DNMT3b resulting in the re-expression of p16(INK4a) and p21/Cip1 mRNA
and proteins [96]. In addition, in studies conducted by Li et al. it was found that EGCG is
capable of reactivating estrogen receptor-α (ER-α) expression in ERα-negative MDA-
MB-231 breast cancer cells [97]. This is of particular importance in breast cancer
therapeutics where many treatment options utilize the ER pathway. Moreover, studies
conducted by Berletch et al. indicated that EGCG treatment of MCF-7 breast cancer cells
resulted in downregulation of the hTERT gene and a time dependent decrease in hTERT
promoter methylation, which paradoxically leads to a decrease in telomerase activity in
these cells [93]. In addition, EGCG has been demonstrated to demethylate the Wnt oncogene
promoter in lung cells [98]. EGCG can also partially reverse the hypermethylation status of
the RECK tumor suppressor gene in oral carcinoma cells, significantly enhancing the
expression of RECK mRNA [99]. Moreover, treatment of LNCaP human prostate cancer
cells with green tea polyphenol caused a time- and dose-dependent re-expression of GSTP1,
whose overexpression has been associated with the development of several types of cancer
[100]. In addition, Choi et al. have identified EGCG as a HAT inhibitor with global
specificity for the majority of HAT enzymes [101]. Recently, EGCG has also been found to
modulate miRNA expression in hepatocellular carcinoma cells (Figure 2 & Table 1) [102].
Furthermore, either EGCG or green tea polyphenols can inhibit carcinogenesis based on
numerous in vivo studies; however, the effects on epigenetic mechanisms and the epigenome
in vivo have not yet been clearly defined [103–105].

While considerable evidence has been presented showing the anticarcinogenic properties of
green tea consumption, the EGCG compound is unstable under normal physiological
conditions. To this end, synthetic analogs of EGCG have been studied in physiological
conditions and show strong anticancer activity with more stability and efficacy [106].
Interestingly, studies conducted using EGCG and a prodrug of EGCG (pEGCG and EGCG
octa-acetate) to enhance the bioavailability and stability of EGCG display inhibition of
hTERT, the catalytic subunit of telomerase, through epigenetic mechanisms affecting the
hTERT gene regulatory region in breast cancer cells [107,108]. Studies provide evidence
that EGCG alone or combined with other epigenetic-modifying compounds such as HDAC
inhibitors may be effective as cancer therapeutic agents and these lines of investigation are
currently of considerable interest in the field of epi-genetics and in the development of an
epigenetic diet for the purpose of cancer prevention.

Resveratrol
The dietary polyphenol resveratrol is naturally found in several plants including peanuts,
mulberries, cranberries and blueberries, but is most abundant in the skin of grapes [109].
Resveratrol is also consumed in the form of red wine. Antioxidant, anti-inflammatory and
anti-cancer properties of resveratrol occur through various molecular and biochemical
pathways [110,111]. For instance, resveratrol has an impact on signaling pathways that
control cell division, cell growth, apoptosis, angiogenesis and tumor metastasis [112–114].
Antiproliferative properties of resveratrol have been reported in liver, skin, breast, prostate,
lung and colon cancer cells [115–117]. It has also been demonstrated that colon carcinoma
cells treated with resveratrol inhibits cell migration, adhesion and invasion [118]. The
beneficial effects of resveratrol have also been demonstrated in vivo in that this bio-active
dietary component has been reported to reduce adenocarcinoma cell metastases in BALB/c
mice thereby increasing the percentage survival of the mice [119,120].

While resveratrol has potential as a dietary anticancer agent, it displays less DNMT
inhibitory activity than some of its dietary counterparts including EGCG (Figure 1 & Table
1). However, resveratrol is capable of preventing the epigenetic silencing of the BRCA1
tumor suppressor protein [121] and Papoutsis et al. demonstrated that resveratrol-treated

Hardy and Tollefsbol Page 5

Epigenomics. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



MCF-7 cells partially restored monomethylated-H3K9, DNMT1, and MBD2 at the BRCA1
promoter [121]. Inhibition of DNMT has been shown in nuclear extracts from MCF-7 breast
cancer cells treated with resveratrol although resveratrol was unable to reverse the
methylation of certain tumor suppressor genes [60]. In addition, resveratrol was unable to
inhibit RARβ2 and MGMT promoter methylation in MCF-7 cells [122,123].

Importantly, resveratrol is associated with activating SIRT-1 and p300, which are known
HDAC inhibitors [124]. As aforementioned, HDACs are responsible for removing acetyl
groups from the lysine residues of histones. There are to date at least 18 HDAC isozymes
that are divided into different classes. Several studies have reported a link between class I
HDACs and the development of malignant tumors, while this link has been observed
substantially less in class II HDACs [125]. Class III HDACs are homologous to the Sir2
protein in yeast and are collectively known as Sir proteins or sirtuins. Sirtuins have specific
inhibitors and are not responsive to class I and II HDAC inhibitors [126]. The SIRT-1-
encoded proteins are necessary for chemoprevention mediated by resveratrol [127]. It is
believed that resveratrol activates SIRT-1 by mimicking physiological pathways that
stimulate SIRT-1 [128,129]. The activation of SIRT-1 by resveratrol negatively regulates
expression of the antiapoptotic protein, Survivin, by deacetylating H3K9 within the
promoter of its gene [130,131]. In addition, studies conducted by Wang et al. found that
SIRT-1 mediates BRCA1 signaling in human breast cancer cells by altering H3 acetylation
[130]. Furthermore, treatment of prostate cancer cells with resveratrol demonstrates
enhanced p53 acetylation and apoptosis by inhibition of the MTA–NuRD complex [132]. In
terms of aging, resveratrol has also been reported to extend the lifespan and improve the
health of mice on a high-calorie diet [133]. Sirturins typically exhibit their activity through
deacetylation of nonhistone proteins but are also important in the maintenance of histone
acetylation patterns [126,134]. This evidence suggests that sirturins can affect normal gene
expression through chromatin regulation and may provide a link between epigenetic changes
associated with aging and obesity as well as epigenetic modifications in tumors.

Curcumin
Curcumin, a diferuloylmethane, is a polyphenol that originates from the plant, Curcuma
longa. Curcumin is the main component of the spice turmeric and is responsible for the
yellow pigmentation of curry. This bioactive dietary component appears to have anti-
inflammatory, antioxidant, antiangiogenic and anti-cancer properties and is used as a
therapeutic agent in Indian and Chinese medicine [135,136]. Investigations indicate that
curcumin inhibits DNMT activity (Figure 1 & Table 1) by covalently blocking the catalytic
thiolate of C1226 of DNMT1 [137,138]. Moreover, there is evidence that curcumin may be
an effective DNA hypomethylating agent that could facilitate the expression of inactive
prometastatic and proto-oncogenes [16,77,137,139]. Curcumin also has epigenomic effects
in that genomic DNA from leukemia cells show global hypomethylation after curcumin
treatments [140]. In addition, studies conducted by Valinluck and Sowers indicated that
curcumin induced anti-inflammatory effects. These effects stemmed from halogenated
cytosine products that mimic 5-methylcytosine in DNA methylation. These data provide
evidence of a link between inflammation and epigenetic alterations that are also seen in
cancer [141].

Curcumin also functions as a histone modifying compound and as a HDAC and HAT
inhibitor (Figure 3 & Table 1) [142]. While this inhibition is less than that of some other
dietary epigenetic modifiers, Kang et al. found that the inhibition of curcumin-mediated
HAT activity results in a decrease in global histone H3 and H4 acetylation in brain cells
[142]. Furthermore, independent studies conducted by Cui and Pollack demonstrated that
promoter hypoacetylation of several histones was curcumin-mediated and correlated to gene
silencing [143,144]. In addition, numerous animal studies have built upon in vitro
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investigations and support the ability of curcumin to inhibit HATs and HDACs in several
disease models including tumorigenesis [77,139,142,145–148]. While the inhibition of both
HATs and HDACs may seem contradictory, recent investigations provide evidence that
HAT inhibitors have a potential role in cancer therapies and that inhibition of both HATs
and HDACs together may provide a potent strategy for cancer treatment [149].
Chemoprevention mediated by curcumin is mainly facilitated by the NF-κB and PI3K/AKT
signaling pathway and typically induces cell cycle arrest and apoptosis [150]. Several groups
have shown that curcumin is a potent inhibitor of p300/CBP activity in leukemia, hepatoma
and cervical cancer cellular extracts [151,152]. There are also indications that curcumin
prevents histone hyperacetylation induced by the MS-275 HDAC inhibitor in peripheral
blood lymphocytes and cancer cells [151,153]. In addition, curcumin has been found to alter
the miRNA expression profile in pancreatic cancer cell lines (Figure 2 & Table 1) [154,155].

The data showing the strong inhibitory activity of curcumin in carcinogenesis suggests its
therapeutic abilities in cancer or its use in chemoprevention. An issue with using curcumin
as a bioactive agent is that its insolubility and instability in water leads to low
bioavailability. However, the bioavailability of curcumin can be enhanced by utilizing
properties of dietary factors such as rubusoside (found in Chinese blackberry extract) and
molecular compounds such as phosphatidylcholine (found in soy and egg yolks) thereby
increasing its potential in cancer chemoprevention or therapy [156,157].

Isoflavones (genistein)
Isoflavones belong to the flavonoid group of compounds, the largest class of polyphenolic
compounds [158]. Isoflavones are found in a number of plants including soybeans, fava
beans and kudzu. Several isoflavones have been investigated and indications are that they
have anti-angiogenic and anticancer properties. Genistein, a phytoestrogen primarily found
in soybeans, is perhaps the most studied of these bioactive compounds. This estrogen-like
compounds acts as a chemopreventative agent in several types of cancers [159]. In fact,
moderate doses of genistein appear to induce inhibitory effects on cervical, prostate, colon
and esophageal cancers [160–162]. Several mechanisms have been found to contribute to the
anticarcinogenic properties of genistein including its ability to regulate gene transcription by
affecting histone acetylation and/or DNA methylation [163].

Genistein treatment of esophageal squamous cell carcinoma partially reversed DNA
hypermethylation and reactivated p16, RARβ and MGMT and a similar reversal was also
seen in prostate cancer cells [162]. Further studies conducted in prostate cells indicate that
genistein induces the expression of the tumor suppressor genes p16 and p21 by altering
histone and promoter methylation [164,165]. Likewise, studies using breast cancer cells
treated with a low (3.125 μM) concentration of genistein demethylated the promoter of the
GSTP1 gene [166]. In addition, genistein-treated prostate and renal cells showed a reversal
of hypermethylation of the BTG3 gene, a known tumor suppressor [167,168]. Moreover,
genistein combined with DNA methylation inhibitors or other DNMTs can enhance the
reactivation of genes silenced by methylation [163,169]. As evidence of this, Li et al. found
that genistein inhibits DNMT1, 3a and 3b (Figure 1) and inhibits the expression of hTERT.
Genistein also increases acetylation by enhancing HAT activity (Figure 3) [168].
Furthermore, investigations have demonstrated that genistein-mediated hypomethylation and
hyperacetylation reactivate the expression of tumor suppressor genes in prostate cancer cells
[164,165]. Genistein and other isoflavones have also been found to regulate miRNA
expression in several cancer cell lines (Figure 2 & Table 1) [170,171].

Importantly, the effects of genistein have recently been tested in humans. For instance, in
studies conducted by Qin et al., 34 healthy premenopausal women received either 40 mg or
140 mg of isoflavones, including genistein, daily through one menstrual cycle. Methylation
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assessment of five genes known to be methylated in breast cancer (p16, RASSIFA, RARβ2,
ER and CCND2) was conducted on intraductal samples. The findings revealed
hypermethylation (which typically leads to gene silencing) of cancer-related genes RARβ2
and CCND2 was increased after genistein treatment and correlated with serum genistein
levels [172].

Isothiocyanates
Isothiocyanates are a category of dietary compounds present in cruciferous vegetables
including broccoli, cabbage and kale. Isothiocyanates are characterized by a sulfur
containing functional group (N=C=S). Commonly used isothiocyanates include: allyl
isothiocyanate (AITC), benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC)
and SFN [173]. Reports have indicated that isothiocyanates have proapoptotic and
antiproliferative properties [174]. Several investigations have demonstrated evidence that
isothiocyanates, including iberin, SFN and a SFN analog erucin, inhibit cancer cell growth
and exhibit proapoptotic capabilities [174]. Treatment with isothiocyanates has also been
reported to prevent esophageal tumorigenesis in rats [175]. Isothiocyanates are known to
affect the epigenome and have anti-cancer properties. In fact, allyl-isothiocyanate, found in
broccoli, has been reported to increase histone acetylation in mouse erythroleukemia cells.
Phenylhexyl isothiocyanate (PHI), a synthetic isothiocyanate, acts as a HDAC inhibitor and
has been demonstrated to hypomethylate p16 and to induce histone H3 hyperacetylation in
myeloma cells [176]. PHI has also been reported to inhibit HDAC activity and plays a role
in remodeling chromatin to activate p21 and induce cell cycle arrest in prostate cancer and
leukemia cells [177,178]. In addition, prostate cancer cells treated with PEITC, found in
watercress, demonstrated demethylation and re-expression of the GSTP1 gene [179].

One of the main isothiocyanate compounds is SFN. SFN is an isothiocyanate found in
cruciferous vegetables such as broccoli. Investigations into the effects of dietary SFN have
shown its anticarcinogenic activity in several cancers [173,180–182]. SFN has many effects
that include inducing apoptosis, affecting the cell cycle and acting as a HDAC inhibitor
(Figure 3 & Table 1). SFN-initiated HDAC inhibition has been found to have epigenomic
effects in that it can increase global and local histone acetylation of a number of genes and is
thought to be involved in the regulation of cancer-related genes [183–185]. Studies
conducted in colorectal and prostate cancer cells show inhibition of HDAC activity due to
SFN treatments. In addition, studies conducted by Myzak et al. using human subjects
demonstrated that a dose of 68 g of broccoli sprouts was effective in inhibiting HDAC
activity in peripheral blood mononucleocytes [186]. In addition, studies conducted by
Meeran et al. indicated that SFN can inhibit DNMTs in breast cancer cells and that SFN
inhibits hTERT in a dose and time-dependent manner [59]. This finding is significant since
hTERT is overexpressed in approximately 90% of cancers.

Other dietary compounds affecting the epigenome
Selenium (Se) is a nutrient found in Brazil nuts, chicken, game meat and beef [187]. Other
chemical forms of Se include selemethionine, selenocysteine, selenate and selenite. Se is an
essential element with antioxidant, proapoptotic, DNA repair and anticancer properties
[188–190]. Se is vital for human health and Se deficiencies have been linked to various
human diseases including cancer [191]. In addition, several other selenoproteins (i.e.,
selenium binding protein-1) have been indicated as important in the development of cancers;
however, their epigenetic effects have not been clearly defined [192].

In trials designed to test Se in nonmelanoma skin cancers, 1312 individuals at a high risk of
developing this disease were given either 200 μg of Se or placebo orally per day for an
average of 4.5 years [193,194]. This trial did not prevent skin cancer but did produce a
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significant 44% secondary decrease in lung cancer incidence [193]. Se has been linked to
DNA methylation in cellular and animal models and Xiang et al. found that Se treatments
caused partial promoter DNA demethylation and re-expression of GSTP1 in prostate cancer
cells. This study also demonstrated that Se decreased histone deacetylase activity (Figure 3
& Table 1) and increased levels of acetylated H3K9, and decreased levels of methylated
H3K9 [191]. In animal studies rats fed with selenium-rich diets induced significant DNA
hypomethylation in the liver and colon [195,196]. Furthermore, Se deficiency has been
demonstrated to cause global hypomethylation and promoter methylation of the p16 and p53
tumor suppressor genes [197]. Se can also decrease DNMT1 protein expression and inhibit
DNMT1 (Figure 1 & Table 1) by direct interaction and indirectly by influencing
homocysteine concentrations [198]. In addition, investigations have demonstrated that
treatment of prostate cancer cells with selenite, an inorganic form of Se, can restore the
expression of anticancer genes silenced by hypermethylation suggesting that epigenetic
regulation by Se may play a role in cancer prevention [191]. Although these studies are
intriguing, further studies involving the epigenetic influence of selenium are needed to fully
appreciate the impact of selenium on the epigenome.

Garlic (Allium sativum) has been used for the prevention of disease for many years, and is
thought to have antibacterial, antiviral and anti-inflammatory activities [199]. Garlic cloves
contain several compounds including: vitamins A, B-complex, C, E, fiber, free amino acids,
sulfur/organosulfur compounds and proteins. In addition, garlic also contains small amounts
of selenium that may contribute to its chemopreventive properties. Garlic extracts and
compounds have been used in experiments involving cancer treatment and prevention in
isolated cell systems and in in vivo models [199]. These studies have shown that garlic acts
to inhibit cell cycle progression, induce apoptosis, inhibit angiogenesis and modifies
histones [200]. Studies conducted by Nian et al. revealed that garlic organosulfur compound,
allyl mercaptan, inhibits histone deacetylase (Figure 3 & Table 1) and enhances Sp3 binding
on the P21/WAF1 promoter, which results in elevated p21 protein expression and cell cycle
arrest [200,201]. In addition, investigations conducted by Lea et al. demonstrate the
induction of histone acetylation in cancer cells treated with garlic compounds [202,203].

Folic acid, or folate, is a B vitamin found in many beans, grains, fortified breakfast cereals,
pastas and green vegetables. Folate is a key element in the methyl-metabolism pathway.
Dietary methyl deficiency can alter hepatic DNA methylation patterns and induce liver
cancer (Table 1) [70,71]. While folate has been studied extensively for its developmental
effects, folate deficiencies lead to hypomethylated genomic DNA, which is associated with
tumorigenesis [204,205]. Folate deficiencies are reported to contribute to the development of
several different cancers including: breast, cervix, ovary, brain, lung and colorectal [206–
208]. Folate regulates the biosynthesis, repair and methylation of DNA, whereas
deficiencies in folate can induce carcinogenesis by augmenting these processes [207]. In
addition, studies involving colorectal cancer indicated that folate deficiency can alter
cytosine methylation in DNA leading to the activation of c-Myc, a known oncogene
[209,210].

While most natural dietary products have shown beneficial effects on the epigenome, not all
dietary components share this characteristic. In fact, alcohol consumption is associated with
harmful epigenetic modifications as well as the development/progression of several human
cancers. For example, colorectal cancer patients with high alcohol consumption had
aprevalence of promoter hypermethylation of numerous genes when compared with patients
with low alcohol consumption (Table 1) [211,212]. In addition, studies involving head and
neck cancers demonstrated that promoter hypermethylation of MGMT and WNT pathway
regulators occurred more frequently in heavy and light drinkers than in nondrinkers [213].
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Other dietary factors including those found in coffee, cashews, tomatoes, parsley, milk
thistle and rosemary, have also been reported to have epigenetic targets all of which could
not be mentioned in this article. However, bioactive components of these nutrients may be
of considerable interest and may have epigenetic targets in cancer [123,214–217].

Future perspective
Different mechanisms are involved in the maintenance of epigenetic states. Studies
discussed herein have shown that dietary factors are likely to contribute to epigenetic
alterations and in some cases may be able to reverse abnormal epigenetic states. In addition,
while many of the aforementioned studies were conducted using a particular dietary factor,
it is reasonable to believe that most may be consumed in combination and over a period of a
lifetime. This may provide a rationale for studying nutrient epigenetic modifiers more in
combination studies or the proposal of an ‘epigenetic diet’ focused on consuming products
that show the ability to stimulate beneficial epigenetic modifications, including increased
consumption of fruit, vegetables and those dietary components that are mentioned herein.
This may be used from a chemopreventive standpoint to incorporate anticancer nutrients
into one’s daily routine to impede disease mechanisms. From a therapeutic perspective many
nutrients have been and are being studied for their ability to prevent and reduce the risk or
severity of certain diseases and for their anticarcinogenic properties. The field of
nutrigenomics involves studying how genes and dietary components interact to influence
phenotype and can reveal how one responds to bioactive components based on genetics,
nutrient-induced changes in DNA methylation and chromatin alterations, and nutrient-
induced changes in gene expression, whereas the field of nutriepigenomics involves the
lifelong remodeling of our epigenomes by nutritional factors [218–220]. Nutriepigenomic
studies focusing on individual responses to bioactive components and individualized
epigenetic diets consisting of bioactive dietary factors mentioned herein will be of particular
interest in the future. Furthermore, future studies focusing on the clinical relevance and
mechanism of epigenetic modification of bio-active dietary factors are needed to further
assess the applicability of dietary factors as cancer preventive and chemopreventive agents.
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Executive summary

Epigenetic mechanisms

• Epigenetic modifications typically occur by changes in DNA methylation,
histone modifications, or by RNAi and can be influenced by dietary factors.

• At least a half of all tumor suppressor genes are inactivated through epigenetic
mechanisms in tumorigenesis.

• Evidence suggests that dietary agents can affect epigenetic processes.

Epigenetic diet compounds

• Dietary polyphenols such as tea polyphenols (i.e., epicatechin, epicatechin-3-
gallate, epigallocatechin and epigallocatechin-3-gallate), resveratrol and
curcumin can inhibit DNA methyltransferases and act as histone modifiers and
demonstrate potential as anticancer therapeutic as well as chemopreventive
agents.

• Isoflavones such as genistein are found in soybeans, fava beans and kudzu and
have been demonstrated to have anticancer properties that, in part, involve DNA
methylation.

• Isothiocyanates including sulforaphane are known to affect the epigenome and
to have anticancer properties and act as a histone deacetylase inhibitor.

• Other dietary factors including those found in Brazilian nuts, chicken, cereals,
coffee, cashews, garlic, parsley, milk thistle and rosemary, have also been
reported to have epigenetic targets in cancer. While most natural dietary
products have shown beneficial effects on the epigenome, some dietary
components (i.e., alcohol) are associated with harmful epigenetic modifications.

Future perspective

• Many nutrients have been and are being studied for their chemopreventive and/
or chemotherapeutic properties.

• Numerous investigations provide a rationale for studying nutrient epigenetic
modifiers further in combination studies. Furthermore, the proposal of an
‘epigenetic diet’ focused on consuming products that show the ability to
stimulate beneficial epigenetic modifications will be of particular interest in the
future.
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Figure 1. Dietary inhibitors of DNA methyltransferases
DNMTs catalyze DNA methylation by adding a methyl group (CH3; indicated by M) to
cytosines of CpG dinucleotides (diamond shapes). Hypermethylation of CpG dinucleotides
or CpG islands by DNMTs usually results in transcriptional gene silencing and gene
inactivation. Several bioactive compounds found in foods (e.g., EGCG in green tea) act as
dietary inhibitors of DNA methyltransferases and also alter gene expression via epigenetic
mechanisms.
DNMTs: DNA methyltransferases; EGCG: Epigallocatechin-3-gallate; M: Methylation.
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Figure 2. Dietary effectors of miRNAs
miRNAs serve as regulators of gene expression. Evidence has been reported supporting the
fact that dietary agents target the miRNA of oncogenes and/or tumor suppressors and impact
the expression level of miRNAs.
EGCG: Epigallocatechin-3-gallate.

Hardy and Tollefsbol Page 24

Epigenomics. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Dietary modifiers of histones
Bioactive compounds including resveratrol, sulforaphane and curcumin have the ability to
alter (indicated by cylinders) HATs as well as HDACs. These histone modifications cause
conformational changes in chromatin structure that lead to changes in DNA accessibility.
HATs induce a relaxed chromatin state allowing transcriptional factors access to DNA (blue
cords) and activate gene expression whereas chromatin in its closed state is indicative of
gene silencing and repression. Dietary compounds can inhibit and/or enhance (arrow) HATs
and HDACs thereby altering gene expression.
EGCG: Epigallocatechin-3-gallate; HAT: Histone acetyltransferase; HDAC: Histone
deacetylase.
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Table 1

Bioactive epigenetic diet compounds, food sources and epigenetic functions.

Epigenetic diet compounds Food sources Epigenetic functions

EC, ECG, EGC and EGCG Green tea DNMT and HAT inhibitor, modulates miRNA

Resveratrol Grapes, peanuts, mulberries, cranberries,
blueberries

DNMT and HDAC inhibitor

Curcumin Tumeric, curry DNMT inhibitor and miRNA modulator

Genistein Soybeans, fava beans DNMT and HDAC inhibitor, enhances HATs,
modulates miRNA

Isothiocyanates, sulforaphane Broccoli, cabbage, kale, watercress DNMT and HDAC inhibitor

Selenium Brazilian nuts, chicken, game meat, beef DNMT and HDAC inhibitor

Allyl mercaptan, organosulfur
compounds

Garlic HDAC inhibitor

Folate Beans, grains, fortified breakfast cereals,
pastas, green vegetables

Deficiencies alter DNA methylation patterns

Alcohol Alcoholic beverages High consumption increases promoter
hypermethylation

DNMT: DNA methyltransferase; EC: Epicatechin; ECG: Epicatechin-3-gallate; EGC: Epigallocatechin; EGCG: Epigallocatechin-3-gallate; HAT:
Histone acetyltransferase; HDAC: Histone deacetylase.
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