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Abstract: Omega 3-docosahexaenoic acid (DHA) and vitamin E Delta-tocotrienol (Delta-T3) are 

extensively studied as protective nutrients against cancer development. Little is known about the 

biological mechanisms targeted by these bioactive molecules on lipid droplet (LD) biogenesis, an 

important breast cancer aggressiveness marker, and the occurrence of lipophagy in breast cancer 

cells. The aim of this study was to investigate the effect of DHA, Delta-T3 and DHA plus Delta-T3 

co-treatment in LD biogenesis and lipophagy process in triple negative breast cancer cell line MDA-

MB-231. Cells were treated with 50 μM DHA and/or 5 μM Delta-T3. Our results demonstrated that 

DHA can trigger an increase in LD biogenesis and co-treatment with Delta-T3 was able to reduce 

this LD biogenesis. In addition, we showed that a higher cytoplasmic LD content is associated with 

a higher breast cancer cells malignance and proliferation. Reduction of cytoplasmic LD content by 

silencing ADRP (adipose differentiation-related protein), a structural LD protein, also decreased cell 

proliferation in MDA-MB-231 cells. Treatment with DHA and Delta-T3 alone or co-treatment did 

not reduce cell viability. Moreover, we showed here that DHA can trigger lipophagy in MDA-MB-

231 cells and DHA plus Delta-T3 co-treatment was able to enhance this lipophagy process. Our 

findings demonstrated that co-treatment with DHA plus Delta-T3 in MDA-MB-231 cells could 

reduce LD biogenesis and potentiate lipophagy in these cells, possibly having a positive impact to 

inhibit breast cancer malignancy. Therefore, suitable doses of DHA and Delta-T3 vitamin E isoform 

supplementation can be a prominent tool in therapeutic treatments against breast cancer. 

Keywords: docosahexaenoic acid (DHA), delta-tocotrienol (Delta-T3), lipid droplets; lipophagy; 

breast cancer 

 

1. Introduction 

Tumor cells often require increased production of metabolic intermediates for proteins and 

lipids synthesis as compared to healthy tissues, being a prerequisite for a rapid proliferation [1]. 

Currently, there is a consensus about critical roles that cellular lipid metabolism exerts on energetic 

homeostasis of tumor cells, including an association of higher expression of genes that belong to lipid 

anabolism and catabolism pathways with malignance phenotype [2,3]. In this context, lipid droplets 

(LD) have been widely studied as an important organelle in cancer biology. LD are intracellular 
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organelles that store neutral lipids and participate in inflammatory mediator’s synthesis [4]. These 

organelles play a key role in harmonizing lipid trafficking for different cellular activities, especially 

providing a substrate for beta-oxidation and membrane synthesis [5]. An increase in cytoplasmic LD 

number in cancer cells is associated with higher aggressiveness and poor prognostic in several types 

of cancer such as breast cancer [6,7], colon cancer [8,9] and prostate cancer [10]. In a process known 

as lipophagy, where the degradation of stored lipids occurs, fatty acids can be mobilized from LD 

[11] and fuel cancer cells. Recently a positive association between cell aggressiveness and increased 

LD content has been reported in different cancer cell lines, among them breast cancer [12]. 

Breast cancer is, currently, the most common cancer among women in the world. This type of 

cancer is a heterogeneous disease highly modulated by hormones signaling, depending on the 

expression of the estrogen receptor (ER), progesterone receptor (PR), and human epithelial receptor 

2 (HER2). Breast cancer can be classified into luminal A, luminal B, HER2 positive, and triple-negative 

subtypes (TNBC) [13]. It has been showed that TNBC patients have worse overall survival than non-

TNBC patients [10]. Among several cell lines widely used for breast cancer studies, we can highlight 

MCF-7 which are ER positive, PR negative and HER2 positive cells and MDA-MB-231 which are 

triple negative cells [14]. 

There is a higher percentage of mortality related to TNBC compared to other types of breast 

cancer [15,16]. Lipid metabolism in these TNBC cells is more activated, so lipophagy is used as an 

energy homeostasis maintenance mechanism, and its modulation is poorly described in the literature 

in cancer context [17]. Since LD play a central role on the lipophagy process and it is increased in the 

most aggressive type of cancers, it is important to better understand how LD can be modulated under 

different conditions of cancer adjuvant treatments. 

LD biogenesis and lipophagy can be important events for adjuvants treatments against breast 

cancer. In the past few years, a considerable number of researches exploring tumor modulation 

proprieties of omega-3 molecules and vitamin E as coadjutants treatments have been increasing, but 

specific mechanisms involved in this process are still poorly understood. 

The family of polyunsaturated omega 3 fatty acids has been widely described as beneficial 

agents in several cellular processes, including a prominent anti-tumor activity, particularly involving 

Docosahexaenoic Acid (DHA 22: 6n-3) [18–21]. DHA was successfully used as an adjuvant capable 

of increasing the efficacy of other anticancer agents, with no observed adverse effects [22]. Despite 

that, it is important to emphasize that DHA plays a role in lipid metabolism and possible will 

modulate differentially diverse cell types according to the impact of this energy pathway for 

intracellular activities [23]. Moreover, vitamin E supplementation has been used to reduce breast 

tumor development [24–26] and vitamin E Tocotrienols isoforms showed superior antioxidant, 

anticancer, anti-inflammatory, cardioprotective and neuroprotective properties when compared to 

tocopherols isoforms [27–30]. However, the effect of DHA and vitamin E co-treatment is still weakly 

investigated in cancer research. It has been described that DHA, in the presence of Delta-Tocotrienol 

(Delta-T3), is able to enhance apoptotic cell death in TNBC cell lines and downregulate carcinogenic 

parameters [31]. 

Since LD biogenesis and lipophagy can be considered tumor aggressiveness biomarkers and 

indicators of higher carcinogenic activity, we aimed to evaluate the effects of DHA and Delta-T3 co-

treatment in LD biogenesis and lipophagy in MDA-MB-231 cells. This study is the first to note that 

DHA supplementation can increase LD biogenesis in breast cancer cells and this event may be related 

to increased breast cancer aggressiveness. Moreover, DHA plus Delta-T3 co-treatment could reduce 

LD biogenesis in breast cancer cells, possibly due to Delta-T3 antioxidant properties. We also verified 

that DHA-treated cells showed a significant increase in lipophagy. In addition, co-treatment with 

Delta-T3 enhanced the lipophagy event in these cells. 

2. Materials and Methods 

2.1. Cells and Treatment 
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MDA-MB-231 cells were cultured in Minimum Essential Medium (MEM) supplemented with 

10% fetal bovine serum (FBS), 1% sodium pyruvate, 1% non-essential amino acid mixture, 1% L-

glutamine, 100 units/mL penicillin and 100 μg/mL streptomycin. MCF-7 cells were grown in 

Dulbecco’s modified Eagle’s medium (DMEM; Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, 

USA) supplemented with 10% FBS, 100 U/mL penicillin and 100 µg/mL streptomycin (all from Gibco; 

Thermo Fisher Scientific, Inc.). MCF10A cells were cultured in DMEM /F12 Ham’s mixture 

supplemented with 5% Equine Serum (Gemini Bio, West Sacramento, CA, USA), EGF 20 ng/mL 

(Sigma-Aldrich, St Louis, MO, USA), insulin 10 μg/mL (Sigma-Aldrich, St Louis, MO, USA), 

hydrocortisone 0.5 mg/mL (Sigma-Aldrich, St Louis, MO, USA), cholera toxin 100 ng/mL (Sigma-

Aldrich, St Louis, MO, USA), 100 units/mL penicillin and 100 μg/mL streptomycin. All cell cultures 

used in the present study were obtained from Rio de Janeiro Cell Bank (RJCB), a certified repository 

of cell lines, and tested for Mycoplasma detection. The VenorGeM®  Mycoplasma Detection Kit 

(Sigma-Aldrich, St Louis, MO, USA, Catalog Number MP0025) was employed for the Mycoplasma 

PCR-based assay and all cell cultures used in the present work were authenticated by short tandem 

repeat [STR] profiling [32,33]. 

In all experiments the cells MCF-7, MCF-10A and MDA-MB-231 were treated with 

docosahexaenoic fatty acid (DHA—50 μM) and Delta-Tocotrienol (Delta-T3—5 μM), isolated or 

associated in co-treatments. These concentrations were used because they are considered 

physiological for the cells and showed no damaging effect on cell viability [34,35]. 

2.2. Assay of Aggressiveness—Cell Transfection with Short Interfering (si)RNA—ADRP 

ADRP silencing knockdown in MDA-MB-231 cells was obtained following the protocol 

described by Shen and colleagues [36]. Briefly, MDA-MB-231 cells were plated (5 × 105) into 6-well 

plates and grown to 50% confluence. After 24 h, cells were transfected with 25 nM (final 

concentration) of siGENOME non-targeting siRNA2, human ADRP siGENOME SMART pool 

(Thermo Fisher Scientific, Inc., Waltham, MA, USA) using Dharma FECT1 transfection reagent, 

according to the manufacturer’s protocol (Thermo Fisher Scientific, Inc., Waltham, MA, USA). 

Following 24 h of incubation, the transfection medium was replaced with complete medium. The 

efficiency of siRNA for ADRP silencing experiment was assessed by staining cells with Bodipy or a 

guinea pig anti-human ADRP polyclonal antibody (Research Diagnostics Inc. Flanders, NJ, USA) and 

analyzing by flow cytometry, as well as by western blotting. 

2.3. Western Blot 

MDA-MB-231 cells were transfected with 25 nM (final concentration) of siGENOME non-

targeting siRNA2, human ADRP siGENOME SMART pool (Thermo Fisher Scientific, Inc., Waltham, 

MA, USA) using Dharma FECT1 transfection reagent, according to the manufacturer’s protocol 

(Thermo Fisher Scientific, Inc., Waltham, MA, USA). Following 24 h of incubation, the transfection 

medium was replaced with complete medium. MDA-MB-231 cells were collected on ice, washed 

twice with PBS, lysed with lysis buffer, and centrifuged at 12,000× g for 10 min at 4 °C. The cell lysate 

was heated at 100 °C for 5 min, and the protein content was determined by BCA assay (Sigma-

Aldrich, St Louis, MO, USA). The same amount of proteins was loaded to a 10% SDS-PAGE. Proteins 

were then transferred to PVDF membrane (Pall Corporation, Ann Arbor, USA) and blocked with 5% 

skim milk for 2 h. The membranes were probed with primary antibodies against b-Actin (Abcam, 

Cambridge, USA) and a guinea pig anti-human ADRP polyclonal antibody (Research Diagnostics) at 

4 °C overnight. Later, the primary antibodies were washed away with TBST for 1 h and the 

membranes were treated with HRP-coupled secondary antibodies (Promega Corp., Madison, USA) 

for 1 h, and washed with TBST afterwards. Finally, Detection of each protein was performed using 

the ECL kit (Abcam plc, 330 Cambridge Science Park, Cambridge UK). 

2.4. Assay of Cytotoxicity 
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The MDA-MB-231 cells were plated in a density of 1 × 105 cells/well and grown for 24 h. The 

various concentrations of DHA (0, 12, 5, 25, 50, 100 and 200 μM) and Delta-T3 (2.5, 5, 10, 20 and 40 

μM) or their co-treatments were added for 24 h, the untreated control received only 0.2% dimethyl 

sulfoxide (DMSO) (solvent). Cell viability was performed using 3-(4,5-Dimethyl-thiazol-2-yl) -2,5-

diphenyl-tetrazolium bromide (MTT) assay in triplicate. MDA-MB-231 cells were seeded in a 96-well 

plate at a density of 1 × 104 cells/well and allowed to adhere overnight. After that, the culture medium 

was removed and it was added 200 μL of fresh culture medium per well. Thereafter the cells were 

incubated for 3 h in L15 culture medium with 10% of MTT. The culture medium was removed and 

100μL DMSO was added to the wells for 5 min, the solution was transferred for the new plate of 96 

wells for reading. Absorbance was measured using spectrophotometer (SpectraMax) at 570 nm 

absorbance. 

2.5. Production of Reactive Oxygen Species (ROS) 

Intracellular reactive oxygen species (ROS) were measured using CellROX Deep Red and 

(Sigma-Aldrich, St Louis, MO, USA) according to the manufacturer’s instructions. After 24 h of 

treatments with DHA, Delta-T3 or their co-treatments, MDA-MB-231 cells were incubated with 5 µM 

CellROX for 30 min, protected from light at 37 °C. The cells were washed 3 times with phosphate-

buffered saline (PBS) and incubated at 4 °C, Fluorescence intensity was measured in the flow 

cytometry (FACS Verse) in the FL2 channel. The ROS generation was expressed as mean fluorescence 

intensity. 

2.6. Lipid Droplet Biogenesis Analysis by Flow Cytometry 

The LD biogenesis was quantitated by flow cytometry. The MDA-MB-231 cells were plated in 

24 well plates and incubated overnight to adhere to the plate. The cells were treated with DHA, Delta-

T3 or their co-treatments for 24 h. The cells were dissociated with trypsin (GIBCO), washed with PBS 

and incubated with the 4,4-Difluoro-1,3,5,7,8-Pentametil-4-Bora-3′,4′-Diaza-S-Bodipy (Bodipy 

492/595) (Sigma-Aldrich, St Louis, MO, USA) in a stock solution of 1 mg/mL in PBS. It was used 1:7000 

Bodipy work solution in PBS (v/v). The cells were incubated with this solution for 30 min at 4 °C in 

the dark. The cells were washed 2 times with PBS, resuspended in 500 μL of PBS and stored at 4 °C 

until reading by FACS Calibur using the FL1 channel. 

2.7. Lipid Droplet Biogenesis Analysis by Confocal Microscopy 

The MDA-MB-231 cells were plated in 24-well plates with a round coverslip in each well, the 

plates were stored overnight at 37 °C in order to cells adhere in the round coverslip. After the cells 

were treated with DHA, Delta-T3 or their co-treatments for 24 h, cells were washed once with PBS 

and fixed with paraformaldehyde (4%) for 10 min. Next, they were washed three more times with 

PBS. Next, the cells were incubated with Bodipy dissolved in PBS at 1:300 (v/v), for 30 min at room 

temperature in the dark. The cells were washed 3 times with PBS. Then cells were washed three times 

with PBS, and 300 μL of 4 ‘solution, 6-diamidino-2-phenylindole (DAPI) at 1:5000 in PBS (v/v) was 

added and the cells were incubated with this solution for 5 min. Then they were washed 3 times with 

PBS. The round coverslips with the cells were fixed on the microscope slide with prolong according 

to the manufacturer’s (Invitrogen, Thermo Fisher Scientific, Inc., Waltham, MA, USA) instructions. 

The images of the LD were obtained by confocal microscopy (Leica TCS SP5 fluorescent microscopy). 

The capture of images by Leica TCS SP5 fluorescent microscopy was made with an increase of 63× 

and zoom of 4. 

2.8. Lipophagy Analysis 

The lipophagy in MDA-MB-231cells was characterized by the identification of the co-localization 

of LC3-B (which stains autophagosome) and Bodipy (which stains LD). Antibodies anti-LC3-B 

(Invitrogen, Thermo Fisher Scientific, Inc., Waltham, MA, USA) was used as primary antibody and 

Alexa Fluor 456 (Invitrogen, Thermo Fisher Scientific, Inc., Waltham, MA, USA) as a secondary 



Nutrients 2019, 11, 1199 5 of 18 

 

antibody. The cells were plated in 24-well plates with a round coverslip in each well. The plates were 

stored at 37°C overnight to allow cells to adhere in the round coverslip. Then the cells were treated 

with DHA, Delta-T3 or their co-treatments for 24 h, and they were washed with PBS once and fixed 

with paraformaldehyde (4%) for 10 min. The cells were washed three times with PBS and fixed for 

permeabilization with triton (0.2%) diluted in PBS for 20 min. Next, they were washed three times 

with PBS and were incubated with blocking buffer for 20 min. The blocking buffer was removed and 

the primary antibody LC3-B was added to the wells at 1:500 v/v in blocking buffer and remained in 

contact with the cells at 4 °C in the dark overnight. The cells were washed three times with PBS and 

incubated with secondary antibody Alexa fluor 456 at the dilution of 1:2000 (v/v) and the Bodipy 

probe dilution at 1:300 (v/v) in PBS for 60 min at room temperature in the dark. The cells were washed 

3 times with PBS and incubated for 5 min at room temperature with DAPI diluted in PBS at 1:5000 

(v/v). Next, the cells were washed three times with PBS. Samples stained only with the secondary 

antibody were used as an experimental control. The round coverslips with the labeled cells were fixed 

on the microscope slide with prolong (Invitrogen, Thermo Fisher Scientific, Inc., Waltham, MA, USA) 

according to manufacturer’s instructions. The lipophagy was observed by confocal microscopy (Leica 

TCS SP5 fluorescent microscopy). The capture of images by Leica TCS SP5 fluorescent microscopy 

was made with an increase of 63× and zoom of 4. 

2.9. Clonogenic Assay 

The ability of MDA-MB-231 cells to form colonies was assessed by the clonogenic assay as 

described by Rafehi and colleagues [10]. The MDA-MB-231 cells suspension were prepared by 

trypsinization. Cells were washed with phosphate buffered saline and incubated with a 0.05% trypsin 

/ EDTA solution for 5–10 min. Trypsin was neutralized with Dulbecco’s modified eagle medium 

containing 10% fetal bovine serum. The cells were detached by pipetting up and down (20 times). 

Cells were plated in 6-well plate in a humidified stove at 37 °C, the number of cells in each well were 

carefully counted using a Neubauer chamber with trypan blue staining, and were diluted in an 

appropriate number of cells (500 cells per well), to achieve ~90% confluency on the day of the 

experiment. Cells were treated with DHA, Delta-T3 or co-treatments for 24 h. After the treatment, the 

culture medium was removed and replaced by complete L15 culture medium with L-glutamine, FBS 

(10%), and antibiotic/antimycotic (1%). This culture medium was changed every 3 days until 14 days 

of cultivation, which it is accepted that the time must be equivalent to at least six cell divisions. After 

this period the cells were fixed as methanol and acetone at 1:1 v/v during 20 min, and stained with 5 

mL 0.01% (w/v) crystal violet in dH2O for 60 min. The excess crystal violet was washed with dH2O 

and allow dishes to dry. Digital images of the colonies were obtained using a camera device, and 

colonies were counted using imaging analysis software packages ImageJ (Fiji Version 1.44a). 

GraphPad Prism software was used for statistical analysis. 

2.10. Cell Migration Assay—Wound Healing Assay 

The cells were plated in 24 well plates. After reaching confluence it was made a risk using one 

pointer of 100 µl and a ruler. The wells were washed with complete L15 culture medium. The cells 

were treated with DHA, Delta-T3 or their co-treatments for 24 h. During treatments, the culture plates 

were photographed at different times (0 h, 16 h and 24 h) in bright microscope [37,38]. The analysis 

of the results was performed with the ImageJ software and the risk closure area was measured using 

the formula: (Initial area − end area) / (Initial area) × 100 = the closing percentage of area [39]. 

2.11. Statistical Analysis 

For the analysis, we used one-way ANOVA for multiple comparisons and the Tukey post-test. 

The results were expressed as differences in the mean of the values compared to untreated control 

cells. For the analysis, the statistical program Graph Pad Prism 5.00 (Trial version) was used. 

3. Results 
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3.1. MDA-MB-231 Cell Line Aggressiveness 

LD biogenesis was analyzed in MCF-10A, MFC-7 and MDA-MB-231 cells as showed in Figure 

1A. Our results showed differential LD biogenesis among all these three cell lineages. Non-malignant 

MCF-10A cells presented less LD cytoplasmic content compared to the highly malignant MDA-MB-

231 cells, while MCF-7 cells were found to present an intermediate amount of cytoplasmic content. 

Considering the elevated amount of LD in MDA-MB-231 cells, a siRNA for ADRP silencing was used 

in order to knock-down ADRP expression and lead to impaired LD formation and ADRP expression 

by flow cytometry (Figure 1B,C) or western blotting (Figure S1). After that, cell proliferation was 

analyzed using CFSE staining (Figure 1D). Results showed a higher cell proliferation capacity in 

MDA-MB-231 cells treated with empty vector compared to those ones treated with siRNA for ADRP 

silencing, suggesting LD biogenesis play an important role in this breast cancer cell proliferative 

capacity. 

 

Figure 1. (A). Lipid droplet biogenesis in MCF-10A, MFC-7 and MDA-MB-231 was assessed by Oil 

Red O staining and analyzed by bright microscopy, magnification of 40×. (B). Lipid droplet biogenesis 

of MDA-MB-231 cells treated with siRNA for adipose differentiation-related protein (ADRP) silencing 

was assessed by Bodipy staining and analyzed by flow cytometry. (C). ADRP expression of MDA-

MB-231 cells treated with siRNA for ADRP silencing was assessed by immunostaining of cells with 

anti-ADRP and analyzed by flow cytometry, numbers represent mean fluorescence intensity (MFI), 

statistical significance is represented by an asterisk with p < 0.05. (D). Cell proliferation of MDA-MB-

231 cells treated with siRNA for ADRP silencing was assessed by Carboxyfluorescein Succinimidyl 

Ester (CFSE) staining and analyzed by flow cytometry. Histograms are representative of three 

independent experiments. 

3.2. Determination of DHA, Delta-T3 and Co-Treatment Cytotoxicity 

For subsequent analysis, it was established, based on a cytotoxicity assay with a range of 

concentrations, that 50 µM and 5 µM were considered as non-toxic physiological concentrations for 

DHA and Delta T3 vitamin E, respectively. Only cells treated with DHA at 200 µM presented a 

significant decrease in cell viability as shown in MTT assay in Figure 2A. Neither Delta-T3 nor co-

treatment with DHA plus Delta-T3 showed any impact in MDA-MB-231 cells viability in doses 

analyzed here (Figure 2B,C). 
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Figure 2. (A). Cytotoxicity of DHA at concentrations of 12.5 μM, 25 μM, 50 μM, 100 μM and 200 μM. 

(B). Cytotoxicity of delta-tocotrienol (Delta-T3) at concentrations of 2.5 μM, 5 μM, 10 μM, 20 μM and 

40 μM. (C). Cytotoxicity of DHA (50 μM) plus Delta T3 (5 μM) co-treatment. All MDA-MB-231 cells 

were treated for 24 h and cytotoxicity was measured by MTT (n = 5). Values were expressed as mean 

± SD. Results considered statistical had p < 0.05 (*) compared to unstimulated MDA-MB-231 cells 

(UNS). 

3.3. Reactive Oxygen Species (ROS) Production 

Treatment with DHA at 50 μM for 1 h showed a significant increase in ROS generation compared 

to the unstimulated cells as showed in Figure 3A. However, other concentrations of DHA in different 

period of incubation time did not trigger ROS increased generation. 

Delta-T3 treatment showed an opposite effect to DHA treatment, reducing ROS generation when 

compared to unstimulated cells (UNS) (p < 0.05) as showed in Figure 3B. Co-treatment with DHA 

plus Delta-T3 for 1 h showed no difference when compared to unstimulated cells or cells treated only 

with DHA or Delta-T3. 

 

Figure 3. (A) Reactive oxygen species (ROS) generation in MDA-MB-231 cells treated with DHA for 

1 or 3 h (50 μM and 100 μM). (B) ROS generation in MDA-MB-231 cells treated with DHA (50 μM), 

Delta-T3 (5 μM) and co-treatment for 1 h. ROS generation was assessed by cell ROX deep red staining 

(n = 3). Values expressed in mean ± SD. Results considered statistical had p < 0.05 (*) compared to 

unstimulated cells (UNS). 

3.4. Lipid Droplet Biogenesis 

LD biogenesis in MDA-MB-231 breast cancer cells was increased in response to DHA treatment, 

in a dose-dependent manner as showed in Figure 4A. In all concentrations tested, the mean 

fluorescence intensity of Bodipy staining was increased when compared to unstimulated cells (UNS). 

Treatment with DHA induced higher LD content compared to unstimulated cells. Treatment with 
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Delta-T3 alone showed only a slight increase in LD content when compared to unstimulated cells. 

Co-treatment with DHA and Delta-T3 reduced LD biogenesis when compared to cells treated with 

DHA or Delta-T3 alone as showed both in MDA-MB-231 cells (Figure 4B) and 4T1 cells (Figure S2). 

Qualitative analysis of these results with MDA-MB-231 cells is also shown by confocal microscopy 

(Figure 4C). 

 

Figure 4. (A) Lipid droplet biogenesis induced by treatment with Docosahexaenoic acid (DHA) (12.5 

μM, 25 μM, 50 μM and 100 μM) for 24 h in MDA-MB-231 breast cancer cells was assessed by Bodipy 

staining and analyzed by flow cytometry. (B). Lipid droplet biogenesis induced by treatment with 

DHA (50 μM), Delta-T3 (5 μM) and co-treatment was assessed by Bodipy staining and analyzed by 

flow cytometry. (C) Confocal microscopy images of lipid droplet biogenesis (Bodipy staining: green) 

after treatment of MDA-MB-231 cells with DHA (50 μM), Delta-T3 (5 μM) or co-treatment. Cell nuclei 

are shown in blue (DAPI staining). Histograms and images are representative of three independent 

experiments. 

3.5. Lipophagy Assay 
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Our results showed the occurrence of lipophagy in MDA-MB-231 breast cancer cells triggered 

by DHA treatment by pointing out the co-localization of bodipy and LC3-B staining in these cells. 

White box indicates zoomed images showing the co-localization between Bodipy staining (green) 

and LC3-B (red), suggesting active lipophagy in these cells. Treatment with Delta-T3 (5 μM) alone 

did not induce lipophagy. However, Delta-T3 was able to increase lipophagy event in MDA-MB-231 

breast cancer cells as shown in co-treatment condition (DHA plus Delta-T3) in Figure 5. 

 

Figure 5. Lipophagy process analyzed in MDA-MB-231 cells treated with DHA (50 μM), Delta-T3 (5 

μM) and co-treatment assessed by confocal microscopy images (63×). LD are shown in green (Bodipy 

staining) and LC3-B is shown in red. Cell nuclei are shown in blue (DAPI staining). Images are 

representative of three independent experiments. 

3.6. Clonogenic and Cell Migration 

Colony forming cell assay (clonogenic) was used to analyze the impact of treatment of MDA-

MB-231 cells with DHA, Delta-3T and both together in the cell ability to form cell colonies, an 

important carcinogenic parameter. Treatment with DHA, Delta-T3 or co-treatment did not alter the 

MDA-MB-231 cells ability to form cell colonies as shown in Figure 6A and 6B. In addition, the cell 

migration ability of MDA-MB-231 cells was assessed by wound healing assay. Treatment with DHA 

alone at 50 μM for 24 h inhibited cell migration ability when compared to unstimulated MDA-MB-

231 cells. Treatment with Delta-T3 (5 μM) did not alter cell migration or modulate DHA effect when 

used in co-treatment as shown in Figure 6C. Representative wound healing assay images after 0, 16 

and 24 h of different treatments were presented in Figure 6D. 
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Figure 6. Clonogenic and cell migration. (A) Images and (B) percentage of the number of MDA-MB-

231 colonies treated with DHA (50 μM), Delta-T3 (5 μM) and co-treatment were assessed by 

clonogenic assay. Cell migration was analyzed by wound healing assay and quantified in percentage 

(C) and representative images at 0, 16 and 24 h (n = 3) (D). Images are representative of three 

independent experiments. 

4. Discussion 

This study observed that DHA at 50 μM and Delta-T3 at 5 μM did not affect cell viability but 

were able to increase LD biogenesis in MDA-MB- 231 TNBC cells. We have previously demonstrated 

that DHA at 50uM does not modulate this breast cancer cell viability [35]. However, co-treatment of 

MDA-MB-231 cells with DHA (50 μM) and Delta-T3 (5 μM) together triggered a reduction in LD 

biogenesis when compared to treatment with DHA alone. This suggests that DHA and Delta-T3, 

when used together, can modulate LD biogenesis in MDA-MB-231 breast cancer cells, which could 

have an impact on breast cancer aggressiveness. 

TNBC has a complex biology and do not respond to hormonal therapy medicines [40], which 

can help decrease or even stop the growth of breast cancer cells. This type of cancer presents a poorer 

prognosis scenario when compared to other breast cancer types. Thus, studies focusing on the 

investigation of its molecular mechanisms and description of bioactive molecules that could help in 

adjuvant clinical treatments, influencing tumor growth, could have major importance in breast cancer 

therapy. It is well known that DHA is beneficial for inhibiting breast tumor carcinogenesis by 

triggering breast cancer cell death at 100 to 200 μM doses in vitro [35,41]. However, our present data 

showed that DHA at 50 μM can also induce an increased amount of LD biogenesis in MDA-MB-231 

breast cancer cells and that higher LD cytoplasmic content can be correlated with higher cancer 

aggressiveness. 

The aggressiveness of MDA-MB-231 TNBC cells was evaluated considering cell proliferation 

ability and LD biogenesis since this cell line presents a higher LD content when compared to non-

tumorigenic and other tumorigenic breast cells. The role of LD in MDA-MB-231 breast cancer cells 

metabolism was demonstrated by silencing messenger ribonucleic acids (mRNAs) of Adipose 

Differentiation-Related Protein (ADRP), an important structural LD protein crucial for LD 
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accumulation and formation. Our results show that knocking-down ADRP mRNA decreases LD 

biogenesis MDA-MB-231 in breast cancer cells, leading to a considerable reduction in the proliferative 

capacity of these cells. This observation suggests that an important carcinogenic parameter, such as 

cell proliferation, in this cancer cells can be altered through LD modulation, highlighting the role of 

these organelles in breast cancer cells aggressiveness. 

Our data showed that the higher the cytoplasmic LD content the higher the cancer 

aggressiveness. LD amount was shown to correlate with the degree of aggressiveness from the non-

malignant MCF10A cells to the highly malignant MDA-MB-231 cells, while MCF-7 cells were found 

to be intermediately aggressive, which is in accordance with other studies [6,7,42]. However, Wright 

and colleagues observed an opposite phenomenon where CUB-domain-containing protein 1 

(CDCP1) knockdown could increase LD abundance and reduce TNBC 2D migration in vitro and 

metastasis in vivo [43]. These might be explained by the fact that proteins involved in the CDCP1 

pathway, such as Src and PKCδ kinases, are also involved in lipid metabolism as well promoting 

fatty acid oxidation and subsequent oxidative phosphorylation providing energy and contributing to 

migration and metastasis. In the present work, our results indicated that malignant breast cancer cells 

can diminish the TNBC MDA-MB-231 ability to proliferate by decreasing the expression of the LD 

structural protein ADRP. Cancer aggressiveness is also related to higher LD content in other tumor 

cells [9,44–49] and has been associated with cell invasiveness, and higher resistance to chemotherapy 

[50,51]. One plausible explanation is that LD can be used as energy substrates for further cellular 

proliferation, consequently increasing disease progression. Cancer cells are able to enhance 

lipogenesis and cholesterol production as well as to uptake a larger amount of lipids and to increase 

fatty acids β-oxidation. In addition, both de novo lipogenesis and upregulation of lipolysis from 

intracellular storages translate in increased fatty acids availability which favors the transformation of 

cells and increasing pathogenesis of cancer [7]. LD quantification in tumor cells has become an 

emerging tool for monitoring tumor aggressiveness in response to treatment in different cancer cell 

types and could contribute to a better understanding of LD biogenesis mechanisms. 

It has been shown that in order to prevent nutrient stress and promote proliferation, breast 

cancer cells import free fatty acids (FFAs) to either generate energy through β-oxidation or 

subsequently store them into LD when fatty acids are present in excess inside cells [52]. Excessive 

FFAs can be cytotoxic to the cells, so LD may provide a cytoprotective mechanism to store these 

intracellular fatty acids [53–55], decreasing cell death caused by lipotoxicity [42,56,57]. DHA 

supplementation was able to increase the LD biogenesis, similarly to other studies showing increased 

LD biogenesis in colorectal cancer cell lines after treatment with DHA [58]. This effect, however, was 

observed in three times higher concentrations than the ones used in our study, suggesting that DHA 

has a higher potential for cytotoxicity in breast cancer cells, even in reduced concentrations. 

DHA is known for inducing ROS production in MDA-MB-231 breast cancer cells [31]. LD 

biogenesis can be stimulated by an increase in oxidative stress resulting from a higher ROS 

production [54]. After one-hour treatment with DHA (50 μM), MDA-MB-231 cells showed increased 

ROS production, an effect that was not observed with three hours of treatment. This is probably due 

to MDA-MB-231 redox capacity [57]. Treatment with Delta-T3 showed reduced ROS production 

when compared to unstimulated cells, probably due to its powerful antioxidant action [27,29]. In 

addition, tocotrienols have the highest antioxidant activity amongst vitamin E isoforms [59–62]. In 

our findings, Delta-T3 treatment reduced DHA-induced ROS production. 

Usually, tumors are known to have altered metabolism and a higher proliferation rate when 

compared to normal cells. Therefore, an increased energy supply is demanded in tumor cells and a 

proposed mechanism to provide energy substrate is autophagy [63,64]. Autophagy presents different 

roles depending on the cell’s metabolism. Under normal conditions, it maintains cellular 

homeostasis. In cancer cells, it shows a tumor suppressor activity through the elimination of the 

oncogenic proteins substrates, toxic proteins and damaged organelles [65]. This pathway is also 

related to LD which can release stored fatty acids to be used in the cellular metabolism [66]. Taking 

this into consideration, cancer cells could generate energy substrates through recycling intracellular 

LD, a process known as lipophagy [67,68]. 



Nutrients 2019, 11, 1199 12 of 18 

 

There is little data available about the correlation among cancer, lipophagy and the tumor 

microenvironment. Dupon and colleagues studied the role of LD in cervical cancer cells (HeLa) 

treated with oleic monounsaturated fatty acid and observed an increase in LD biogenesis and 

autophagy, indicating lipophagy occurrence in the absence of nutrient deprivation [69]. This finding 

suggests that lipophagy may occur as a homeostatic pathway to control the storage of lipids and 

lipolysis. Furthermore, lipophagy can supply the cell’s phospholipids demand, facilitating the 

formation of autophagosome, an essential step for triggering lipophagy [70–72]. Most of the studies 

regarding lipophagy include nutrient-deprived microenvironments, suggesting that higher LD 

biogenesis as a mechanism through which cells can regulate their energy substrate, maintaining their 

homeostasis [54,73,74]. In our study model, there was no nutrient deprivation. For this reason, this 

does not interfere or modulate lipophagy. Treatment of MDA-MB-231 cells with DHA increased 

lipophagy when compared to unstimulated cells in a nutrient-rich environment, suggesting that 

DHA probably was used as a lipid substrate for LD biogenesis. Other fatty acids can behave similarly 

to DHA, such as oleic acid (18:9 n-1), a monounsaturated fatty acid that triggered lipophagy in 

mammary epithelial cells, hepatocytes, and osteosarcoma cells [75,76]. 

As well as DHA, studies regarding Tocotrienol (Vitamin E) isoform have revealed a new horizon 

for this molecule as an antitumor agent [77–79], presented as anti-proliferative [80,81], and pro-

apoptotic effects in different cancer cell lines [25]. The Tocotrienol isoforms act as antioxidants and 

anti-inflammatories agents [25–30,82]. Here, we have shown that co-treatment of the MDA-MB-231 

breast cancer cells with DHA plus Delta-T3 notably reduced LD biogenesis when compared to cells 

treated with DHA alone, suggesting that Tocotrienol isoforms could modulate DHA-related effects 

in LD biogenesis. There are few studies evaluating the effects of Tocotrienol isoforms in intracellular 

lipid metabolism [83,84]. Therefore, there is little information about the mechanisms of action of these 

isoforms in LD biogenesis. In hepatocellular cancer cells, treatment with Delta-T3 (10–15μM) 

inhibited intracellular triglycerides accumulation, leading to decreased LD biogenesis [80]. In the 

preadipocyte cell line (non-tumoral), treatment with Delta-T3 (25μM) also decreased LD biogenesis 

[59]. Our study used lower concentrations of these bioactive molecules (5 μM), which were still able 

to reduce LD biogenesis when used together with DHA. 

Cellular lipid storages, such as LD, are also targeted for lysosomal degradation via lipophagy, 

which also occurs in cancer cells [67,85]. Here we demonstrated that DHA treatment can trigger 

lipophagy in MDA-MB-231 breast cancer cells and co-treatment with Delta-T3 could potentiate this 

lipophagy event, by showing increased colocalization of LD and LC3-B. This increased lipophagy 

could explain the reduction of LD biogenesis induced by co-treatment of DHA plus Delta-T3. Other 

studies also showed increased autophagy as a regulator of lipid metabolism in MDA-MB-231 cells 

supplemented with Tocopherol (22%) and Tocotrienol (78%) when compared to unstimulated cells 

[86]. 

Cell survival of breast cancer cells under treatments was also analyzed, showing no difference 

between all treatments compared to treated cells. This is probably due to the fact that the 

concentrations used in this study were based on what we considered to be physiological 

concentrations. Loss of MDA-MB-231 cells viability after treatment with DHA was only induced cell 

cytotoxicity at 100 μM. A similar event was observed with Delta-T3, which only induced cell 

cytotoxicity at 40 μM. Cell migration of MDA-MB-231 cells was reduced by DHA treatment when 

compared to unstimulated cells, and treatment with Delta-T3 did not show significant differences 

when compared to treatment with DHA alone. Other studies have reported that treatment with DHA 

was able to reduce carcinogenic parameters in human hepatocellular carcinoma cells, breast cancer 

cells, prostate cancer cells, leukemic cells, colonocytes, human colon cancer cells and pancreas cells 

[87–95], which corroborates our findings. Xiong and colleagues showed that co-treatment with DHA 

and Gamma-Tocotrienol (γT3) induces apoptotic events in TNBC cells [31], but no studies until now 

analyzed the effect of treatment with Delta-T3 isoform on cell migration. 

The effect of the co-treatment with bioactive molecules DHA and Delta-T3 in LD biogenesis and 

lipophagy in MDA-MB-231 breast cancer cells is poorly understood. Our results showed that despite 

the differences in LD biogenesis and occurrence of lipophagy, no significant change was seen in the 
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carcinogenesis parameters analyzed in MDA-MB-231 cells with co-treatments. The increased LD 

content of MDA-MB-231 breast cancer cells reported in this study suggests that the interaction 

between DHA and Delta-T3 needs to be further investigated. Since increased LD content and lipid 

accumulation observed in this breast cancer cells treated with DHA at the doses analyzed here are 

associated with aggressive behavior in MDA-MB-231 cells [96], the doses of the DHA and vitamin E 

during supplementation of breast cancer patients should be analyzed carefully. We have previously 

demonstrated that higher doses of DHA have an anti-tumor effect against breast cancer cells MDA-

MB-231 cells by triggering proptosis cell death [35]. 

We believe that higher concentrations of DHA and Delta-T3, as well as a long time treatment, 

should be tested analyzing the lipophagy event in breast cancer cells. Different concentrations could 

provide more meaningful changes in carcinogenic parameters since Tocotrienol is classically 

presented as an antitumor agent. Inflammatory pathways should also be further investigated in this 

context, considering the importance of inflammation in the tumor microenvironment, cancer lipid 

metabolism and tumor progression. Besides, it is important to note that in the present manuscript we 

have only mainly focused on the TNBC MDA-MB-231 cells but it is necessary to consider to 

investigate this lipid metabolism modulation induced by DHA and Delta-T3 in other breast cancer 

cell lines such as MB468 and HCC70, and organoids as well in future works. 

5. Conclusions 

DHA and Delta-T3 are largely studied as potentials bioactive molecules that could have an 

influence on tumor growth reduction, mainly being used as treatment associated with conventional 

therapies. However, the role of DHA and Delta-T3 is still not completely elucidated in this context. 

These supplements are capable of interfering with cellular metabolism, directly modulating tumor 

microenvironment. 

In this study, our findings demonstrated that co-treatment with DHA plus Delta-T3 in MDA-

MB-231 cells could reduce LD biogenesis and potentiate lipophagy in these cells, possibly having a 

positive impact to inhibit breast cancer malignance. Therefore, suitable doses of DHA and Delta-T3 

vitamin E isoform supplementation can be a prominent tool in therapeutic treatments against breast 

cancer. 
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