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Abstract: Dietary phenolics or polyphenols are mostly metabolized by the human gut microbiota.
These metabolites appear to confer the beneficial health effects attributed to phenolics. Microbial
composition affects the type of metabolites produced. Reciprocally, phenolics modulate microbial
composition. Understanding this relationship could be used to positively impact health by phenolic
supplementation and thus create favorable colonic conditions. This study explored the effect of
six stilbenoids (batatasin III, oxyresveratrol, piceatannol, pinostilbene, resveratrol, thunalbene) on
the gut microbiota composition. Stilbenoids were anaerobically fermented with fecal bacteria from
four donors, samples were collected at 0 and 24 h, and effects on the microbiota were assessed by
16S rRNA gene sequencing. Statistical tests identified affected microbes at three taxonomic levels.
Observed microbial composition modulation by stilbenoids included a decrease in the Firmicutes
to Bacteroidetes ratio, a decrease in the relative abundance of strains from the genus Clostridium,
and effects on the family Lachnospiraceae. A frequently observed effect was a further decrease of the
relative abundance when compared to the control. An opposite effect to the control was observed
for Faecalibacterium prausnitzii, whose relative abundance increased. Observed effects were more
frequently attributed to resveratrol and piceatannol, followed by thunalbene and batatasin III.

Keywords: phenolics; polyphenols; stilbenoids; human gut microbiota; 16S rRNA gene sequencing;
batatasin III; oxyresveratrol; piceatannol; pinostilbene; resveratrol; thunalbene; fermentation; human
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1. Introduction

Stilbenoids are a subclass of plant-derived phenolic compounds often consumed in the diet as
components from red grapes, peanuts, certain berries, and many others. Their average dietary intake is
1 g/day [1–3]. The most well studied stilbenoid is resveratrol, which came into the spotlight with the
so-called French paradox, where it was attributed in reducing coronary heart disease mortality among
the sample population despite the strong presence of risk factors [4,5]. Further studies have attributed
many other potential health benefits to resveratrol, as well as to various other phenolics, such as potent
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antioxidant activity, cardio-protection, neuroprotection, anti-inflammatory effects, cancer prevention,
and others [4].

In plants, phenolics are usually conjugated to sugars, organic acids, and macromolecules
(e.g., dietary fiber and proteins) and most of them are not properly released and absorbed in the small
intestine, reaching the colon for further microbial fermentation; at colonic level, they are fermented
by the resident gut microbiota (GM) [6]. It is the resulting metabolites that are attributed the health
benefits as bioactive compounds. Evidence shows that 90–95% of ingested dietary phenolics, usually
in their glycosylated form, are not absorbed in the upper part of the digestive tract. Most of them
reach the colon, where the GM metabolize them into lower molecular weight-phenolic compounds,
such as phenolic acids, that can be more easily absorbed by intestinal epithelial cells and enter the liver
for further biotransformation or systemic circulation [7–13]. These microbial bio-transformations are
grouped into three major catabolic processes: hydrolysis (O-deglycosylations and ester hydrolysis),
cleavage (C-ring cleavage; delactonization; demethylation), and reductions (dehydroxylation and
double bond reduction) [14]. Reciprocal to these bio-transformations by the GM, phenolics appear to
modulate the GM composition by favoring/disfavoring certain microbial strains, thus establishing a
two-way relationship between the GM and phenolics [6,15–18]. The undigested phenolics, along with
diet-independent substrates like endogenous host secretions, are the main substrates of gut bacterial
metabolism, and may affect the GM in a similar manner as prebiotics, shape microbial composition
by antimicrobial action, and/or influence bacterial adhesion [2,19–24]. For example, chlorogenic
acid, resveratrol, catechin, and certain quercetin derivatives have exhibited prebiotic-like effects by
increasing the proportional representation of Bifidobacterium strains [2,7,25–27]. Antimicrobial action
has been shown by inoculation with resveratrol and certain ellagitannins by inhibiting the growth
of several Clostridia species [2,12,17,28]. Bacterial adhesion effects by procyanidin and chlorogenic
acid have been noticed through adhesion enhancement of certain Lactobacillus strains to intestinal
epithelial cells [23,24].

To our knowledge, except for resveratrol and a few studies with piceatannol, both of which
are well-recognized plant-derived phenolics, there is not much information regarding the effects of
stilbenes on the GM. Other than a 2016 study on the effects of repeated stilbenoid administration on
the GM, the rest have mostly focused on evaluating a single dose effect, mainly on culturable microbial
strains. The findings from the former showed a strong change in the GM composition after application
of resveratrol and viniferin, especially in the enrichment of the order Enterobacteriales, and a decrease
of Bifidobacteriales [29]. Observations from the single dose studies showed changes in the GM
composition; for example, increases for species Akkermansia muciniphila and Faecalibacterium prausnitzii
by resveratrol, and in the genus Lactobacillus by piceatannol [2,7,8,27,30–34].

The objective of this study was to assess the effect of six stilbenoid phenolics (batatasin III (Bat),
oxyresveratrol (Oxy), trans-resveratrol (Res), piceatannol (Pic), pinostilbene (Pino), and thunalbene
(Thu); the corresponding chemical structures are given in Figure 1) on the GM at dietary relevant
concentrations. Using an in vitro fecal fermentation (FFM) system, these stilbenoids were fermented
with human fecal bacteria from four donors. Effects on the GM composition were based on 16S rRNA
gene sequencing results.
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Figure 1. Molecular structures of stilbenoids studied. All stilbenoids have a C6-C2-C6 structure.  Figure 1. Molecular structures of stilbenoids studied. All stilbenoids have a C6-C2-C6 structure.
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2. Results and Discussion

2.1. Firmicutes to Bacteroidetes (F/B) Ratio

The most abundant phyla in human gut microbiota are Firmicutes and Bacteroidetes, which often
account for more than 90% of the total gut microbiota [35]. However, that was not the case in this
study. Firmicutes were the most abundant, followed by Actinobacteria, with Bacteroidetes coming in
at either fourth or fifth place depending on the donor. One possibility may be that one of the kits used
during processing may have been more sensitive to phyla other than Bacteroidetes, or perhaps these
bacteria progress to a higher relative abundance during in vitro cultivation compared to what would
normally be found in stool alone. Nevertheless, the ratio of these two phyla can still be evaluated.

An increased F/B ratio in both human and mouse gut microbiota has consistently been associated
with higher obesity and disease occurrence [36,37]. Resveratrol has been previously shown to decrease
this ratio [2,27,38], and our findings support this. Similarly, the other tested stilbenoids also decreased
the F/B ratio as can be seen in Figure 2. Res, Bat, and Thu reached lower ratios (61 ± 23, 49 ± 22,
96 ± 53 respectively) than the control at 24 h (121 ± 73). Interestingly, Pino showed an increase
(227 ± 127), while Pic stayed approximately equal (131 ± 98) to the control at 24 h. The response
is a result of a decrease in the relative abundance of Firmicutes and an increase of Bacteroidetes,
which is consistent with findings from other studies [2,7,27]. For Firmicutes, after treatment with all
tested stilbenoids, the relative abundance decrease (−2.9% ± 0.03%) was lower than the control at
24 h (−4.6% ± 0.03%), with the least decrease observed under Oxy and Pino (−1.5% ± 0.03% and
−0.7% ± 0.02%, respectively). For Bacteroidetes, after treatment with all tested stilbenoids except for
Pino (51.0.2% ± 0.00%), the growth in relative abundance (Bat 278.0% ± 0.02%; Oxy 198.1% ± 0.00%;
Pic 86.0% ± 0.05%; Res 195.6% ± 0.04%; Thu 300.3% ± 0.01%) was greater than that of the control at
24 h (68.0% ± 0.04%).
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Figure 2. Mean Firmicutes/Bacteroidetes ratio (/10) in fermentations. Error bars represent the 95% CI.
Ctrl0 = control at 0 h; Ctrl24 = control at 24 h; Bat = batatasin III; Oxy = oxyresveratrol; Pic = piceatannol;
Pino = pinostilbene; Res = trans-resveratrol; Thu = thunalbene. All stilbenoids at 24 h.

2.2. Most and Least Abundant Species

A total of 230 bacterial species entities were detected in the tested fecal samples. This number
includes unidentified species that could only be categorized as part of a higher taxonomic level.
For example, an unidentified species, from an unidentified genus, that belongs to the Clostridiaceae
family. The lowest detected relative abundance was 0.00047% for an unidentified species of the
Christensenella genus.

The five species with the highest relative abundance per each of the tested samples were identified.
These accounted for 53% to 66% of the total relative abundance and, in total, comprised 11 distinct
species (Table 1). Therefore, there appears to be certain consistency, and not much variability, among
the most abundant taxa.
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Table 1. The most abundant species obtained by identifying the five species with the highest relative
abundance for Control 0 h and 24 h, and per each of the six tested stilbenoid samples at 24 h.
Gen. = unnamed genus, sp. = unnamed species.

Phylum Class Order Family Genus Species

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium sp.

Firmicutes

Bacilli Lactobacillales Streptococcaceae Streptococcus sp.

Clostridia Clostridiales

Lachnospiraceae
Blautia sp.

Gen. sp.

Gen. sp.

Ruminococcaceae

Faecalibacterium prausnitzii

Ruminococcus sp.

Gen. sp.

Gen. sp.

Unnamed Gen. sp.

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Gen. sp.

Focusing on the inverse, in the five species with the least relative abundance, there is less
consistency and greater variability since it comprised 27 distinct species (Appendix A, Table A1).
It’s important not to ignore the least abundant species since their low abundance may not necessarily
correlate with the importance of their function. As stated in Cueva et al., the microorganisms present in
smaller quantities, but developing specific functions, could be the key to understanding the individual
response to consumption of bioactive compounds (i.e., phenolics). Some metabolic functions seem to
be achieved by a wide variety of species, while other functions are only done by a specific few [15].
For example, Ruminococcus bromii, identified within the 27 species, has been noted to be a butyrate
(a short-chain fatty acid) producer, which is a function that appears to be found in fewer species than
those for acetate [39].

2.3. Changes in Relative Abundance (Phylum, Family, Species)

Both parametric and non-parametric statistical tests were used to identify taxa of interest at the
phylum, family, and species level based on two comparisons. The statistical tests were used as a tool to
identify potential significantly affected taxa, and should not be interpreted as a portrayal of definite
statistical significance (for those with p values in the range) due to the small sample size (four donors).
The identified taxa reported p < 0.075 for at least one p value (paired sample t-test and/or Wilcoxon
signed-rank test) for both comparisons 1 and 2. Comparison 1 used as a baseline the relative abundance
of the 24 h control, and compared this value to each of the six stilbenoid fermentations. Comparison 2
used as a baseline the magnitude of change (growth or decline) in relative abundance between Control
0 h and Control 24 h, and compared this value to the magnitude of change between Control 0 h and
each of the six stilbenoid fermentations.

Figure 3 displays these identified taxa in the form of a phylogenetic tree sorted by phylogenetic
distance. The corresponding p values are listed in Appendix A, Table A2, and the corresponding
relative abundance box plots are shown in Figure 4. Each comparison (1&2) is shown separately in
Appendix A, Tables A3 and A4, and list additional taxa. Clustered bar graphs of bacterial composition
at the phylum and family levels can be seen in Appendix A, Figures A1 and A2. Table 2 displays how
our study compares to findings and observations from other studies regarding the effect of the selected
stilbenoids on a specific taxon.

2.3.1. Decrease in Relative Abundance

A decrease in relative abundance was observed for several taxa under some of the tested
stilbenoids. The most frequently observed response was a further decrease of the relative abundance
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of a specific taxon as compared to the 24 h control by either Res, Pic or Thu. For example,
for Clostridium sp. there was a decrease of −54.2% ± 28.8% for Ctrl24, while the decrease caused by Pic
and Thu were of a greater magnitude, −62.9% ± 28.0% (t(3) = 3.960, p = 0.029) and −79.3% ± 22.6%
(t(3) = 3.901, p = 0.030), respectively. Similar responses were observed, albeit at different magnitudes,
for family Lachnospiraceae, and species Coprococcus sp., Collinsella aerofaciens, and Lachnospiraceae Gen. sp.
At the genus level, Clostridium decreased under all tested stilbenoids in our study. Previous findings,
as listed in Table 2, observed that several species from the genus Clostridium, which includes both
commensal and deleterious species, had been shown to decrease with resveratrol [2,12].

A second observed response was a decrease in relative abundance while the 24 h control increased.
This was observed by three species, Ruminococcus sp. (−3.2% ± 69.1%, t(2) = 4.448, p = 0.047 under
Bat; −7.0% ± 69.4%, t(3) = 8.253,p = 0.004 under Pic; −41.1% ± 50.9%, t(3) = 1.953, p = 0.146 under
Thu), Ruminococcus sp. (−3.3%± 12.7%, t(3) = 3.947, p = 0.029 under Res), and Coriobacteriaceae Gen. sp.
(−0.9% ± 94.2%, t(2) = 6.272, p = 0.024 under Oxy; −3.7% ± 90.6%, t(3) = 3.261,p = 0.047 under
Pic; −39.2% ± 10.0%, t(3) = 1.726, p = 0.183 under Thu), while they increased in the 24 h control
(27.8% ± 80.6%, 32.2%± 68.5%, 15.5%± 20.8%, respectively). Regarding Ruminococcus, this may not be
a favorable response according to recent research that points to a high proportion of long-chain dietary
fibers degraders, butyrate producing bacteria such as Ruminococcus, Eubacterium, and Bifidobacterium
as being part of healthy gut microbiota [11,40–42]. The Ruminococcus genus has previously been
identified as one of the three taxa, besides Bacteroides and Prevotella, that define the enterotype concept,
which could help in explaining variability in responders/non-responders in intervention studies [43].
In regards to Coriobacteriaceae, it has been noted that many species that metabolize phenolics belong to
this family, however, its potential health implications are still poorly understood [6]. Nevertheless,
one important aspect of this family is that all identified S-equol-producing bacteria, except for the
genus Lactococcus, belong to it [44,45].

A third observed response was a decrease in relative abundance while the 24 h control also
decreased, but with a larger magnitude. This was observed for Blautia obeum, which was recently
reclassified, its former name being Ruminococcus obeum [46]. Blautia has been considered one of the
major representatives of the Firmicutes phylum due to its relatively high abundance [15]. This species
experienced a decrease in relative abundance by thunalbene (−5.6% ± 32.1%, (t(3) = 3.763, p = 0.033),
but at a lower magnitude than the control at 24 h (−29.8% ± 35.6%). A decrease of Blautia, at the genus
level, was also reported in a study conducted on mice fed a phenolic-enriched tomato diet, as well as
in a study of human fecal fermentation study after consumption of phenolics from tart cherries [26,31].
These findings, along with our study, suggest that certain phenolics may cause a decrease in this genus,
but at a lesser magnitude than without it. This taxon also appears to be a butyrate-producing microbe
whose reduction has been correlated with decreased production of butyrate [47].

Eight of the identified taxa belonged to the family Lachnospiraceae. There was no consistent
response from the tested stilbenoids within this family however, the most frequent response was
a decrease in relative abundance. This decrease was also observed in a study where rats were
supplemented with the stilbenoid pterostilbene in their diet. In that study, Lachnospiraceae was
significantly reduced in each tested group when compared to baseline levels [33].
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Figure 3. Phylogenetic tree of all identified bacterial entitites. The tree is sorted by phylogenetic distance,
therefore the closer they are on the tree, the closer they are genetically [41,42]. Taxa shown in red
displayed p < 0.075 for at least one p value (Paired sample t-test and/or Wilcoxon signed-rank test) for
both comparisons 1 and 2. Bolded black line refers to family Lachnospiraceae. Verr. = Verrucomicrobia.
Gen. = unnamed genus, sp. = unnamed species.
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Figure 4. Box plots corresponding to the identified species and stilbenoids in Table A2. The y-axis
displays relative abundance (%). The x-axis shows Ctrl0, control at 0 h; Ctrl24, control at 24 h;
as well as the stilbenoid(s) corresponding to the observation (Bat, batatasin III; Oxy, oxyresveratrol;
Pic, piceatannol; Pino, pinostilbene; Res, trans-resveratrol; Thu, thunalbene (all stilbenoids at 24 h).
Gen. = unnamed genus, sp. = unnamed species.

2.3.2. Increase in Relative Abundance

An increase in relative abundance with no change in the 24 h control was observed for
Faecalibacterium prausnitzii under Res (36.6% ± 88.0%, t(3) = −2.806, p = 0.068 under Res), 24 h control
(−0.5% ± 62.5%). This species has been previously identified as a butyrate producing bacterium and
is regarded as being beneficial. Butyrate production appears to be key in maintaining the colonic
epithelium by inducing proliferation of healthy colonocytes. Fiber-poor diets, such as the one our
donors were subject to prior to sample donation, have been associated with low butyrate production.
One study showed a strong positive correlation between the proportion of F. prausnitzii and that
of butyrate in individuals on a normal diet, and the reduction in F. prausnitzii on switching to a
fiber-free or fiber-supplemented diet correlated with the reduction in fecal butyrate [47,48]. The gut
epithelium is the main body site for butyrate sequestration, and low butyrate production has been
connected to inflammatory diseases such as ulcerative colitis [39,49]. Unlike acetate producing bacteria,
which are widely distributed, there appear to be fewer butyrate producing bacteria such as S. prausnitzii,
E. rectale, E. hallii, and R. bromii [38]. It was observed to increase in plant-based, fiber-rich, diets, thus,
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stilbenoids being phytochemicals, were expected to increase their abundance. Our findings support
this with resveratrol.

An increase in relative abundance with a decrease in the 24 h control was observed for
Ruminococcus gnavus under Thu (8.2% ± 40.6%, t(3) = −2.244, p = 0.111 under Thu), 24 h control
(−12.9% ± 30.7%). The observed p value, along with the box plot in Figure 4, show that R. gnavus’
increase was not as pronounced as that of F. prausnitzii. Both of these taxa tend to be quite reduced in
inflammatory bowel diseases such as Crohn’s disease [50,51].

Although it was detected in only one of our donors, Akkermansia muciniphila was observed to be
enhanced by resveratrol. This species has been previously observed to be enhanced by pterostilbene,
which has shown to exhibit similar cellular effects to resveratrol. One of these is that both phenolics
have been hypothesized to mimic caloric restriction effects at the molecular level, thus modifying the
gut microbiota, especially enhancing A. muciniphila [33].

These findings emphasize the importance of trying to get to the lowest possible taxonomic level to
better characterize the gut microbiota. As can be seen from our study, species within the same family
level are not all uniform in their responses. Higher taxonomic levels are quite useful, and can make
experiments and data processing much more manageable; however, care must be taken in generalizing
for every member of a taxon.

Whether the microbiota response is a decrease or an increase in relative abundance, effects are
more frequently attributed to resveratrol and piceatannol, followed by thunalbene and batatasin III.
This difference may be related to their chemical moieties. All stilbenoids share a basic C6-C2-C6
structure, differing only in the presence or absence of a C-C double bond on -C2-, and on the type and
position of functional groups, mainly hydroxyl (-OH) and o-methoxyl (-OCH3) groups on the aromatic
rings. In phenolics, -OH groups play an important role on their bioactivity, and their substitution by
-OCH3 groups has been shown to reduce their bioactivity [52–54]. -OH groups are good hydrogen
donors, are considered very reactive and potent radical scavengers, are key in the general antioxidant
mechanism of resveratrol, and it has been shown that phenolics with more -OH groups exhibit higher
capacity for enzyme inhibition than those with -OCH3 groups [53–57]. Enzyme inhibition capacity has
also been shown to be affected by hydrogenation of the C-C double bond on -C2-, which decreased
enzyme inhibition [54,58–60]. This suggests that phenolics with -OH moieties and C-C double bond on
-C2- may be more bioactive than those with -OCH3 moieties and lacking a C-C double bond on -C2-.
Resveratrol and Piceatannol have three and four -OH groups respectively, as well as a C-C double-bond
on -C2-. They were the two stilbenoids that were most frequently attributed effects on the GM in this
study. These were followed by thunalbene, which is O-methylated and has a C-C double bond on
-C2-, and by batatasin III, which is O-methylated and lacks a C-C double bond on -C2-. Regarding
demethylation, a recent study reported a demethylated colonic metabolite of the phenolic curcumin
by Blautia sp. MRG-PMF1 [61]. Thunalbene is O-methylated and, as reported earlier, Blautia sp.
experienced a decrease in relative abundance under thunalbene, but at a lower magnitude than that of
the control. Regarding C-C double bond reduction, Bode et al. showed that Slackia equalifaciens and
Adlercreutzia equolifaciens were able to metabolize resveratrol to dihydroresveratrol by reduction of the
C-C double bond, but could not identify any bacteria for the -OH cleavage that produced two other
metabolites [8]. Reduction of the C-C double bond by GM has also been shown for other phenolics such
as isoflavones and hydroxycinnamates, while -OH cleavage for lignans and phenolic acids [19,62–64].
How chemical moieties affect metabolite production by microbial strains and bioactivities such as
antioxidant activity, enzyme inhibition, quorum sensing, and others is outside the scope of our study;
nevertheless, it’s an important avenue for ongoing and future research.

The interpretation of the results from GM studies such as this one should take into consideration
the concept of inter-individual variability. This concept is well known in the literature, the most
well-known example being the difference between individuals whose microbiota are either producers
or non-producers of the S-equol phytoestrogen. Oral administration of S-equol results in improvement
of certain cardiovascular disease biomarkers, but only on those who are producers [20,47]. Although
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our sample size is small, differences among donor GM composition can be visualized in Figures A1
and A2. Donor D2, for example, appears to have a very atypical microbial composition when compared
to the other three donors.

Table 2. Observations from previous studies regarding the effect of select stilbenoids on specific taxa
compared to observations in this study [2,7,8,27,30–34,65]. From the literature, ↑ or ↓ indicate a reported
abundance increase or decrease of the strain. From this study, S, NS, Un, ND, signify, respectively,
supported, not supported, undefined, not detected. Gen. = unnamed genus, sp. = unnamed species.

Stilbenoid Effect Phylum Family Genus Species Notes

Resveratrol

↑

Actinobacteria Bifidobacteriaceae Bifidobacterium sp. NS

Firmicutes Clostridiaceae
Clostridium XB90 S

Faecalibacterium prausnitzii S Won’t grow without acetate in pure
culture.

Lactobacillaceae Lactobacillus sp. Un.

↓

Bacteroidetes Tannerellaceae Parabacteroides distansonis NS Only detected in one donor.

Firmicutes
Clostridiaceae Clostridium

aldenense S
Species not identified, responsesignificn

at genus level.
C9 S

hathewayi S
MLG661 S

Enterococcaceae Enterococcus faecalis ND
Gracilibacteraceae Gracilibacter thermotolerans ND

Proteobacteria Enterobacteriaceae Proteus mirabilis ND
Firmicutes to Bacteroidetes (F/B) ratio S

Other Actinobacteria Coriobacteriaceae

Slackia equolifaciens Other Dihydroresveratrol producers.
Identified at genus level only. Slackia’s

abundance highest for Res, and not
detectable at Ctrl0. Adlercreutzia’s
abundance highest for Ctrl24, and

lowest for Ctrl0.Adlercreutzia equolifaciens Other

Phenolic
mix,

includes
Resveratrol

↑ Verrucomicrobia Verrucomicrobiaceae Akkermansia muciniphila S Mice study. Detected in one of our
donors.

↓ Firmicutes
Lachnospiraceae Blautia sp. Un. Mice study.

Ruminococcaceae Oscillospira sp. S Mice study. Has never been cultured,
but always detected.

Piceatannol
↑ Firmicutes

Lactobacillaceae Lactobacillus sp. NS Mice study.
Unnamed Gen. sp. NS Mice study.

↓
Bacteroidetes

Unnamed Gen. sp. NS Mice study. Decrease was observed, but
at a lower magnitude than Ctrl24.

Other Bacteroidaceae Gen. sp. S Mice study. Abundance change.

Fiber
↑

Bacteroidetes Prevotellaceae Prevotella sp. S Stilbenoids associated with
fiber-containing food.

Plant-based
diet

Firmicutes
Clostridiaceae Faecalibacterium prausnitzii S Saccharolytic microbes.

Lachnospiraceae Roseburia sp. NS Saccharolytic microbes.

↓ Proteobacteria Desulfovibrionaceae Bilophila sp. ND Putrefactive microbes. Less abundance
expected in a plant-based diet.

Bacteroidetes Bacteroidaceae Bacteroides sp. NS Putrefactive microbes. Less abundance
expected in a plant-based diet.

3. Materials and Methods

3.1. Study Design

Using an in vitro fecal fermentation (FFM) system, a set of six stilbenoid phenolics were fermented
in vials via inoculation with human fecal bacteria obtained from four donors. The vials were sampled
at 0 hour (0 h) and 24 h (24 h) time points, and the effect of the stilbenoids on human GM was assessed
by 16S rRNA gene sequencing. Both parametric and non-parametric statistical tests were used to
identify potentially affected strains at the phylum, family, and species taxonomic levels.

3.2. Donors and Ethics Statement

The fecal samples originated from four volunteer donors, all of whom consented for their samples
to be used for research purposes by signing a consent form. The ethical agreement for stool collection
was obtained by the ethical committee (ZEK/22/09/2017) of the Czech University of Life Sciences in
Prague. The donors were two males and two females ages 23, 28 (Donors 1 and 3) and 26, 29 (Donors 2
and 4) respectively. Their respective body mass index (BMI) were 23.0, 24.7, 26.0, and 26.5. To reduce
potential interference from other dietary phenolics, all donors followed a low-phenolic diet for at
least 48 hours prior to providing the fecal sample. Also, none had taken any antibiotics for at least
6 months prior to sampling. They described themselves as being in good health, and none reported
any chronic conditions or diseases. They followed an omnivorous diet in their daily life. Females were
neither pregnant nor lactating. The samples were collected in October and November 2016, at the
Czech University of Life Sciences in Prague, Czech Republic.
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3.3. In vitro Fecal Fermentation (FFM) System

3.3.1. Standard Compounds and Chemicals

The chemicals used for preparation of the fermentation medium were obtained from Merck
(Darmstadt, Germany). The stilbenoids batatasin III, piceatannol, thunalbene, and pinostilbene were
purchased from ChemFaces (Wuhan, China) in 98% purity; trans-resveratrol, oxyresveratrol were
obtained from Merck in 98% purity. Standards were prepared as 1% methanol/formic acid. Methanol
and ethyl acetate were of analytical grade and purchased from VWR Chemicals (Stribrna Skalice,
Czech Republic). Dimethyl sulfoxide (DMSO) was obtained from VWR Chemicals. Formic acid was
obtained from Fisher Scientific (Merelbeke, Belgium) in >98% purity. Ultra-pure water (MilliQ) was
obtained from a Millipore system (Bedford, MA, USA).

3.3.2. Fermentation Medium

Fermentation medium was prepared from the following solutions based on previous fecal
fermentation studies [66–68]. Micromineral solution was prepared from 2.64 g CaCl2, 2 g MnCl2,
0.2 g CoCl2, 1.6 g FeCl3, and up to 20 mL distilled water. Macromineral solution was prepared from
7.14 g of Na2HPO4, 6.2 g KH2PO4, 0.6 g MgSO4, and up to 1 L distilled water. Carbonate buffer was
made of 1 g NH4HCO3, 8.75 g NaHCO3, and distilled water up to 250 mL (stored max. 1 month).
The fermentation medium was prepared from 225 mL distilled water and 1.125 g of tryptone, 56.25 µL
of micromineral solution, 112.5 mL of CO3 buffer, 112.5 mL of macromineral solution, and 562.5 µL of
0.1% resazurin solution.

3.3.3. Phosphate Buffer, Reducing Solution

Sodium phosphate buffer for the preparation of fecal slurries was made of 1.7702 g KH2PO4 in
distilled water (195 mL), and 3.6222 g Na2HPO4 in 305 mL distilled water (both 1/15 M). Afterwards,
the buffer’s pH was modified to 7.0 by hydrochloric acid. Reducing solution was prepared from
125 mg cysteine hydrochloride, 0.8 mL 1 M NaOH, 125 mg Na2S and distilled water up to 20 mL.

3.3.4. Fermentations Using Human Fecal Microbiota

Each tested stilbenoid was dissolved in DMSO to reach a concentration of 10 mg/mL.
The fermentation medium and sodium phosphate buffer were boiled and cooled to approximately
37 ◦C while they were purged with oxygen free nitrogen gas (approx. 30 min). The medium’s pH was
adjusted to pH 7.0 using HCl. For each vial, 16.8 mL of medium was transferred to the corresponding
fermentation bottle and 0.8 mL of reducing solution was added. Per each donor, freshly obtained feces
were homogenized in a stomacher bag with the sodium phosphate buffer to make a 32% fecal slurry.
This slurry was then filtered through a mesh, from which 2 mL of the resulting filtrate was mixed
with the fermentation medium in each of the fermentation bottles. 20 µL of tested compound solution
(or DMSO alone for the controls) was also added. The bottles were incubated at 37 ◦C for 48 hours in a
shaking bath at 100 strokes per minute. Four aliquots of fecal suspensions were prepared in 1.5 mL
Eppendorf tubes by transferring from 20 mL glass bottles, collected at 0, 2, 4, 8, 24 and 48 h, and stored
at −80 ◦C until further analysis. These timepoints were used for a related metabolomic study. For this
particular study, only 0 and 24 timepoints were used.

3.4. Microbial Analysis

3.4.1. DNA Extraction

Bacterial DNA was isolated from the fecal samples according to the manufacturer’s instructions
using the Quick-DNA Fecal/Soil Microbe Miniprep Kit (Zymo Research, Irvine, CA, USA). The purified
DNA was eluted in 100 µL of elution buffer and stored at −20 ◦C until further use.
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3.4.2. 16.S rDNA amplification: Nested PCR

During this nested PCR, two genes were amplified and targeted by two different pairs of primers
in two successive reactions of PCR. The first PCR was done to amplify almost full length bacterial
16S rRNA gene fragments using the universal bacterial primers 616V (5′(5′ AGA GTT TGA TYM
TGG CTC 3′) and 630R (5′ CAK AAA GGA GGT GAT CC 3′) [69]. The thermal cycling was carried
out with an initial denaturation step of 94 ◦C for 5 min, followed by 32 cycles of denaturation at
94 ◦C for 45 s, annealing at 52 ◦C for 1 min, and elongation at 72 ◦C for 1 min and 30 s; cycling was
completed by a final elongation step of 72 ◦C for 6 min. Using the purified PCR product from the
first PCR, the second PCR was performed as described by Fliegerová et al. [70] to amplify the V4-V5
region of the 16S rRNA gene by the primer pair: BactBF (GGATTAGATACCCTGGTAGT) and BactBR
(CACGACACGAGCTGACG). The used thermal cycling program was: initial denaturation for 5 min at
95 ◦C, followed by 35 cycles of 30 s at 95 ◦C, 30 s at 57 ◦C and 30 s at 72 ◦C, ending by final elongation
for 5 min at 72 ◦C. The PCR amplicons (300 bp) were checked at 1.5% agarose electrophoresis (30 min
at 100 V), purified by QIAquick PCR Purification Kit (Qiagen, Venlo, The Netherlands) according to
the protocol and quantified by Nanodrop (Thermo Fisher, Waltham, MA, USA).

3.4.3. Semi-conductor Based Next Generation Sequencing

Obtained PCR products were used to prepare libraries for diversity analyses by next generation
sequencing (NGS) approach on Personal Genome Machine (Life Technologies, Carlsbad, CA, USA)
according to Milani et al. [71]. 200 ng of DNA from each sample was used to prepare sequencing
libraries by NEBNext®Fast DNA Library Prep Set kit (New England Biolabs, Ipswich, MA, USA)
according to manufacturer’s protocol. The Ion Xpress Barcode adapters (Thermo Fisher Scientific,
Waltham, MA, USA) were used to label each sample. The adaptor ligated libraries were purified
and simultaneously size-selected using AMPure XP bead sizing (Beckman Coulter, Brea, CA, USA).
The barcoded libraries were pooled in equimolar amount (about 26 pM). The pool of libraries was
used to prepare sequencing template by emulsion PCR on Ion Sphere Particles (ISPs) using Ion
PGMTM Hi-QTM View OT2 400 Kit (Thermo Fisher Scientific) in Ion OneTouchTM 2 instrument.
The enrichment of the template positive ISPs were performed on Ion OneTouchTM ES instrument.
The enriched template positive ISPs were then loaded in Ion 316TM Chip v2 BC (Thermo Fisher
Scientific). The sequencing was then performed on an Ion Torrent PGM sequencer (Thermo Fisher
Scientific, Waltham, MA, USA) using Ion PGMTM Hi-QTM View Sequencing solutions kit (Thermo
Fisher Scientific).

3.4.4. Data Analysis

The sequences obtained in FASTQ format were processed by QIIME analyses pipeline [72].
The chimeras were removed by USEARCH tool [73]. Remaining sequences were clustered and
identified by performing open-reference OTU picking against the Greengene database [74]. Diversity
index analysis and unweighted and weighted UniFrac distance metrics analyses were generated using
QIIME and expressed by principle coordinate analysis (PCoA).

3.5. Statistical Analysis

Using SPSS version 25 (IBM Corp., Armonk, NY, USA), both parametric and non-parametric
statistical tests were used to identify taxa of interest at the phylum, family, and species level by the
following comparisons: (1) Using the relative abundance of the control fermentation with stool samples
at 24 h with DMSO only as our baseline for comparison, we identified taxa from the fermentations
with stilbenoids (each comparison done separately) that had p values <0.05 for the Paired sample t-test,
and/or <0.075 for the Wilcoxon signed-rank test when compared to our baseline. (2) The magnitude of
change (growth or decline) in relative abundance between the control fermentation with only stool
sample at 0 h (Ctrl0 h) and our control fermentation with samples with DMSO only at 24 h was
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calculated, and this value became our baseline for comparison against the magnitude of change from
0 h to 24 h for the fermentations with stilbenoids. Selected taxa had p values <0.05 for the Paired sample
t-test, and/or <0.075 for the Wilcoxon signed-rank test. Only 5 stilbenoids were tested. Pinostilbene
was excluded since samples for it were only available for two out of the four donors. Similarly, any pair
that had n ≤ 2 was excluded. Since the data was in percent, the magnitude of change was obtained by
obtaining the percentage change of the given percentages. Values of 0% at 0 h were excluded, even if
they were detectable at higher percentages. This was done due to the ambiguity of whether they were
low values that were undetectable or whether they were simply not present.

4. Conclusions

From the surveyed literature, none of the tested stilbenoids, other than resveratrol and piceatannol,
had been tested on their effect on the human GM. Our findings suggest that the tested stilbenoids,
at physiological concentrations of 10 µg/mL, modulate the GM as observed in a fecal fermentation
human colon model. Some of these effects are similar to other studies that have also assessed the effects
of dietary phenolics on the GM. Some of our observed effects include a decrease in the Firmicutes to
Bacteroidetes ratio, a consistent decrease in the relative abundance of strains from the genus Clostridium,
and responses from several strains from the family Lachnospiraceae. A frequently observed effect on
the identified taxa was a further decrease of the relative abundance when compared to the control.
An opposite effect to the control was observed for Faecalibacterium prausnitzii, which, contrary to
the control, increased in relative abundance. This strain has been previously considered beneficial
for health. Looking at specific stilbenoids, observed responses were more frequently attributed to
resveratrol and piceatannol, followed by thunalbene and batatasin III.

The use of 16S rRNA gene sequencing, in combination with a fecal fermentation human colon
model, appears to be a very useful tool to characterize the human GM, especially to identify
unculturable strains. It is important to note that studies such as this one are expected to increase in
precision as the sensitivity of the detection technology, as well as the taxonomical reference databases,
are refined and expanded. The tested stilbenoids appear to support the well-observed view of the
potential positive impact of phenolics through the modulation of human GM, and thus further studies
are recommended to characterize this microbial environment and its function more precisely.
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Appendix A

Table A1. 27 least abundant species. Obtained by identifying the five species with the lowest relative abundance for Control 0 and 24 and per each of the six stilbenoids.
Gen. = unnamed genus, sp. = unnamed species.

Phylum Class Order Family Genus Species

Actinobacteria
Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium adolescentis

longum

Coriobacteriia Coriobacteriales Coriobacteriaceae
Eggerthella lenta

Gen. sp.

Firmicutes

Bacilli

Bacillales Staphylococcaceae Staphylococcus sp.

Lactobacillales

Lactobacillaceae Lactobacillus sp.

Leuconostocaceae Weissella sp.

Streptococcaceae Lactococcus sp.

Streptococcus sp.

Clostridia Clostridiales

[Mogibacteriaceae] Gen. sp.

Clostridiaceae Gen. sp.

Lachnospiraceae

[Ruminococcus] gnavus

Blautia
sp.

sp.

Lachnospira sp.

Roseburia
faecis

sp.

Ruminococcaceae Ruminococcus
bromii

sp.

Veillonellaceae
Dialister sp.

Phascolarctobacterium sp.

Succiniclasticum sp.

Erysipelotrichi Erysipelotrichales Erysipelotrichaceae [Eubacterium] biforme

Gen. sp.
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Table A1. Cont.

Phylum Class Order Family Genus Species

Proteobacteria
Betaproteobacteria Burkholderiales Alcaligenaceae Sutterella sp.

Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Bilophila sp.

Gammaproteobacteria Enterobacteriales Enterobacteriaceae Gen. sp.

Table A2. Taxa that displayed p < 0.075 for at least one p value (Paired sample t-test and/or Wilcoxon signed-rank test) for both comparisons 1 and 2. Bolded
p values are those <0.05 for the t-test, and ≤0.068 for the signed-rank test. Results from pairs with n ≤ 2 were excluded, which includes all pinostilbene samples.
See materials and methods section for more details. Bat, batatasin III; Oxy, oxyresveratrol; Pic, piceatannol; Pino, pinostilbene; Res, trans-resveratrol; Thu, thunalbene.
Gen. = unnamed genus, sp. = unnamed species.

Phylum Class Order Family Genus Species Stilbenoid
Magnitude Change from 0 h to 24 h Rel. Abundance at 24 h

Mean(%) ± SD df Paired-T Wilcoxon Paired-T Wilcoxon

Firmicutes Clostridia Clostridiales Lachnospiraceae Control −20.1 ± 9.7
Res −22.9 ± 10.2 3 0.025 0.068 0.045 0.068

Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae
Collinsella aerofaciens Control −1.0 ± 51.5

Pic −6.2 ± 51.2 3 0.075 0.068 0.097 0.068

Gen. sp. Control 27.8 ± 80.6
Pic −3.7 ± 90.6 3 0.047 0.068 0.020 0.068

Firmicutes Clostridia Clostridiales

Clostridiaceae Clostridium sp.
Control −54.2 ± 28.8

Pic −62.9 ± 28.0 3 0.029 0.068 0.098 0.068
Thu −79.3 ± 22.6 3 0.030 0.068 0.043 0.068

Lachnospiraceae

[Ruminococcus]

sp.
Control 32.2 ± 68.5

Bat −3.2 ± 69.1 2 0.047 0.109 0.004 0.109
Pic −7.0 ± 69.4 3 0.004 0.068 0.021 0.068

sp. Control 15.5 ± 20.8
Res −3.3 ± 12.7 3 0.029 0.068 0.110 0.068

gnavus Control −12.9 ± 30.7
Thu 8.2 ± 40.6 3 0.111 0.068 0.057 0.068

Blautia obeum
Control −29.8 ± 35.6

Thu −5.6 ± 32.1 3 0.033 0.068 0.061 0.068

Coprococcus sp. Control −5.3 ± 11.9
Res −19.9 ± 3.6 3 0.063 0.068 0.030 0.068

Gen. sp. Control −19.0 ± 18.4
Res −25.5 ± 16.7 3 0.041 0.068 0.040 0.068

Faecalibacterium prausnitzii Control −0.5 ± 62.5
Res 36.6 ± 88.0 3 0.068 0.068 0.062 0.068
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Table A3. Identified taxa based on Comparison 1, which used as a baseline the relative abundance of the 24 h control, and compared that to each of the six stilbenoid
fermentations at 24 h. Taxa displayed Paired-T p value <0.05 and/or Wilcoxon Signed Rank p value <0.075. Bolded values are those within these ranges. Gen. = unnamed
genus, sp. = unnamed species.

Paired-T Wilcoxon

Phylum Class Order Family Stilbenoid Mean(%) ± SD t df P < 0.05 P < 0.075

Actinobacteria
Actinobacteria Actinomycetales Actinomycetaceae - Control 0.16 ± 0.28

Pic 0.11 ± 0.20 1.352 3 0.269 0.068

Coriobacteriia Coriobacteriales Coriobacteriaceae - Control 3.68 ± 0.93

Pic 3.48 ± 1.12 2.114 3 0.125 0.068

Firmicutes

Bacilli Lactobacillales
Aerococcaceae - Control 0.04 ± 0.06

Res 0.02 ± 0.04 1.417 3 0.252 0.068

Leuconostocaceae - Control 0.11 ± 0.19

Res 0.13 ± 0.21 −1.733 3 0.182 0.068

Clostridia Clostridiales

Lachnospiraceae - Control 43.72 ± 4.93

Res 42.15 ± 4.53 3.312 3 0.045 0.068

Ruminococcaceae -
Control 23.70 ± 7.06

Pic 27.30 ± 2.77 −1.606 3 0.207 0.068

Res 25.39 ± 5.64 −2.062 3 0.131 0.068

Unnamed Unnamed Unnamed - Control 0.01 ± 0.00

Pic 0.00 ± 0.00 4.303 3 0.023 0.068

Phylum Class Order Family Genus Species Stilbenoid Mean(%) ± SD df P < 0.05 P < 0.075

Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae

Gen. sp.
Control 0.42 ± 0.33

Pic 0.48 ± 0.39 −1.746 3 0.179 0.068

Res 0.48 ± 0.39 −1.821 3 0.166 0.068

Adlercreutzia sp. Control 0.13 ± 0.09

Pic 0.09 ± 0.07 1.554 3 0.218 0.068

Collinsella
sp. Control 0.14 ± 0.07

Thu 0.09 ± 0.03 1.194 3 0.148 0.068

aerofaciens Control 2.58 ± 0.55

Pic 2.43 ± 0.66 2.391 3 0.097 0.068

Gen. sp.
Control 0.13 ± 0.05

Pic 0.09 ± 0.05 4.546 3 0.020 0.068

Thu 0.07 ± 0.05 2.061 3 0.131 0.068
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Table A3. Cont.

Paired-T Wilcoxon

Phylum Class Order Family Stilbenoid Mean(%) ± SD t df P < 0.05 P < 0.075

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides sp. Control 0.06 ± 0.06

Bat 0.10 ± 0.07 −26.712 2 0.001 0.109

Firmicutes

Bacilli Lactobacillales Aerococcaceae Gen. sp. Control 0.03 ± 0.06

Res 0.02 ± 0.03 1.430 3 0.248 0.068

Clostridia Clostridiales

[Mogibacteriaceae] Gen. sp. Control 0.40 ± 0.30

Res 0.49 ± 0.35 −2.088 3 0.128 0.068

Clostridiaceae

Clostridium sp.

Control 0.07 ± 0.05

Pic 0.05 ± 0.05 2.378 3 0.098 0.068

Res 0.01 ± 0.01 1.808 3 0.168 0.068

Thu 0.04 ± 0.04 3.390 3 0.043 0.068

SMB53 sp.
Control 0.04 ± 0.01

Pic 0.02 ± 0.02 2.222 3 0.113 0.068

Thu 0.02 ± 0.02 2.008 3 0.138 0.068

Gen. sp. Control 0.28 ± 0.05

Pic 0.19 ± 0.08 2.926 3 0.061 0.068

Lachnospiraceae

[Ruminococcus]

sp.

Control 0.12 ± 0.04

Bat 0.09 ± 0.05 16.420 2 0.004 0.109

Pic 0.08 ± 0.05 4.482 3 0.021 0.068

Thu 0.06 ± 0.04 2.193 3 0.116 0.068

sp. Control 2.17 ± 1.71

Res 1.80 ± 1.39 2.251 3 0.110 0.068

gnavus Control 0.76 ± 0.34

Thu 0.91 ± 0.33 -3.012 3 0.057 0.068

Anaerostipes sp.
Control 0.05 ± 0.07

Pic 0.04 ± 0.07 2.485 3 0.089 0.068

Res 0.09 ± 0.09 −2.516 3 0.086 0.068

Blautia
obeum

Control 0.43 ± 0.52

Thu 0.55 ± 0.59 −2.929 3 0.061 0.068

producta Control 0.01 ± 0.01

Res 0.00 ± 0.00 2.185 3 0.117 0.068
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Table A3. Cont.

Paired-T Wilcoxon

Phylum Class Order Family Stilbenoid Mean(%) ± SD t df P < 0.05 P < 0.075

Coprococcus sp. Control 1.88 ± 0.54

Res 1.62 ± 0.52 3.895 3 0.030 0.068

Dorea
sp. Control 0.07 ± 0.04

Res 0.07 ± 0.04 -4.817 2 0.040 0.715

formicigenerans Control 0.36 ± 0.16

Thu 0.49 ± 0.28 −2.143 3 0.121 0.068

Lachnospira sp. Control 0.29 ± 0.44

Pic 0.33 ± 0.48 −1.723 3 0.183 0.068

Roseburia sp. Control 0.19 ± 0.11

Pic 0.23 ± 0.09 −1.555 3 0.218 0.068

Gen. sp. Control 12.58 ± 0.44

Res 11.59 ± 0.80 3.468 3 0.040 0.068

Ruminococcaceae Faecalibacterium prausnitzii Control 2.01 ± 1.01

Res 2.79 ± 1.53 −2.912 3 0.062 0.068

[Mogibacteriaceae] Gen. sp.
Control 0.02 ± 0.03

Res 0.49 ± 0.35 −2.088 3 0.128 0.068

Thu 0.01 ± 0.02 1.431 3 0.248 0.068

Unnamed Unnamed Unnamed Gen. sp. Control 0.01 ± 0.00

Pic 0.00 ± 0.00 4.303 3 0.023 0.068

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Gen. sp. Control 0.01 ± 0.01

Thu 0.00 ± 0.00 1.884 3 0.156 0.068
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Table A4. Identified taxa based on Comparison 2, which used as a baseline the magnitude of change (growth or decline) in relative abundance between Control 0 h
and Control 24 h, and compared that to the magnitude of change between Control 0 h and each of the 6 stilbenoid fermentations. Taxa displayed Paired-T p value <0.05
and/or Wilcoxon Signed Rank p value <0.075. Bolded values are those within these ranges. Gen. = unnamed genus, sp. = unnamed species.

Paired-T Wilcoxon

Phylum Class Order Family Stilbenoid Mean(%) ± SD t df P < 0.05 P < 0.075

Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae - Control 13.01 ± 51.37

Pic 6.73 ± 52.38 2.465 3 0.090 0.068

Firmicutes Clostridia Clostridiales

Lachnospiraceae - Control −20.13 ± 9.71

Res −22.88 ± 10.24 4.197 3 0.025 0.068

Ruminococcaceae -
Control 4.68 ± 35.06

Pic 21.94 ± 27.47 −1.604 3 0.207 0.068

Res 12.17 ± 28.65 −1.894 3 0.155 0.068

Phylum Class Order Family Genus Species Stilbenoid Mean(%) ± SD df P < 0.05 P < 0.075

Actinobacteria Coriobacteria Coriobacteriales Coriobacteriaceae

Gen. sp.
Control 43.71 ± 85.20

Pic 59.03 ± 95.62 -2.563 3 0.083 0.068

Res 58.79 ± 92.21 -2.608 3 0.080 0.068

Collinsella
Sp. Control 24.32 ± 63.97

Thu −21.06 ± 13.23 1.722 3 0.183 0.068

aerofaciens Control −1.03 ± 51.47

Pic −6.22 ± 51.19 2.685 3 0.075 0.068

Gen. sp.

Control 27.75 ± 80.59

Oxy −0.93 ± 94.16 6.272 2 0.024 0.109

Pic −3.70 ± 90.64 3.261 3 0.047 0.068

Thu −39.16 ± 10.03 1.726 3 0.183 0.068
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Table A4. Cont.

Paired-T Wilcoxon

Phylum Class Order Family Stilbenoid Mean(%) ± SD t df P < 0.05 P < 0.075

Firmicutes Clostridia Clostridiales

[Mogibacteriaceae] Gen. sp. Control 72.05 ± 96.46

Res 121.96 ± 121.92 −2.783 3 0.069 0.068

Clostridiaceae
Clostridium sp.

Control −54.19 ± 28.78

Pic −62.90 ± 27.96 3.960 3 0.029 0.068

Res −90.28 ± 15.89 1.908 3 0.152 0.068

Thu −79.31 ± 22.65 3.901 3 0.030 0.068

Gen. sp. Control 122.65 ± 206.83

Pic 6.93 ± 40.25 1.353 3 0.269 0.068

Lachnospiraceae

[Ruminococcus]

sp.

Control 32.18 ± 68.47

Bat −3.23 ± 69.11 4.448 2 0.047 0.109

Pic −7.02 ± 69.37 8.253 3 0.004 0.068

Thu −41.13 ± 50.91 1.953 3 0.146 0.068

sp. Control 15.46 ± 20.76

Res −3.29 ± 12.72 3.947 3 0.029 0.068

gnavus Control −12.89 ± 30.72

Thu 8.24 ± 40.57 −2.244 3 0.111 0.068

Blautia obeum
Control −29.83 ± 35.61

Thu −5.56 ± 32.11 −3.763 3 0.033 0.068

Coprococcus sp. Control −5.31 ± 11.92

Res −19.86 ± 3.60 2.883 3 0.063 0.068

Dorea
sp. Control 16.18 ± 75.27

Oxy 59.34 ± 95.43 −9.591 2 0.011 0.109

formicigenerans Control −5.41 ± 27.27

Thu 30.22 ± 52.23 −2.397 3 0.096 0.068

Lachnospira sp. Control 69.70 ± 26.12

Pic 128.21 ± 95.39 −1.274 3 0.292 0.068

Roseburia sp. Control −63.94 ± 38.85

Pic −56.62 ± 37.62 −1.597 3 0.209 0.068

Gen. sp. Control −19.04 ± 18.36

Res −25.50 ± 16.67 3.433 3 0.041 0.068

Ruminococcaceae Faecalibacterium prausnitzii Control −0.51 ± 62.49

Res 36.58 ± 87.95 −2.806 3 0.068 0.068
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Figure A1. Bacterial composition at the phylum level, per donor. D# denotes the donor; Ctrl0, control
at 0 h; Ctrl24, control at 24 h; Bat, batatasin III; Oxy, oxyresveratrol; Pic, piceatannol; Pino, pinostilbene;
Res, trans-resveratrol; Thu, thunalbene (all stilbenoids at 24 h).
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